Ceusters Werner, Smith Barry, Kumar Anand, Dhaen Christoffel
VP Research, Language and Computing nv, Het Moorhof, Hazenakkerstraat 20a, B9520-Zonnegem, Belgium.
Stud Health Technol Inform. 2004;107(Pt 1):482-6.
Quality assurance in large terminologies is a difficult issue. We present two algorithms that can help terminology developers and users to identify potential areas of improvement. We demonstrate the methodology by applying the algorithms to one of the most popular terminologies, SNOMED-CT. Analysis of the results provides evidence for the thesis that both formal logical and linguistic tools should be used in the development and quality-assurance process of large terminologies.
大型术语集的质量保证是一个难题。我们提出了两种算法,可帮助术语集开发者和用户识别潜在的改进领域。我们通过将这些算法应用于最流行的术语集之一SNOMED-CT来演示该方法。对结果的分析为以下论点提供了证据:在大型术语集的开发和质量保证过程中应同时使用形式逻辑和语言工具。