Suppr超能文献

从医学主题词(MeSH)共现中提炼概念联系。

Distilling conceptual connections from MeSH co-occurrences.

作者信息

Srinivasan Padmini, Hristovski Dimitar

机构信息

School of Library and Information Science, The University of Iowa, Iowa City, USA.

出版信息

Stud Health Technol Inform. 2004;107(Pt 2):808-12.

Abstract

Our aim is to contribute to biomedical text extraction and mining research. In this paper we present exploratory research on the MeSH terms assigned to MEDLINE citations. We analyze MeSH based co-occurrences and identify the interesting ones, i.e., those that are likely to be semantically meaningful. For each selected co-occurring pair we derive a weighted vector representation that emphasizes the verb based functional aspects of the underlying semantics. Preliminary experiments exploring the potential value of these vectors gave us very good results. The larger goal of this project is to contribute to knowledge discovery research by mining the knowledge that is latent within the biomedical literature. It is also to provide a method capable of suggesting cross-disciplinary connections via the pairs derived from all of MEDLINE.

摘要

我们的目标是为生物医学文本提取和挖掘研究做出贡献。在本文中,我们展示了对分配给MEDLINE引文的医学主题词(MeSH)的探索性研究。我们分析基于MeSH的共现情况,并识别出有趣的共现情况,即那些可能具有语义意义的情况。对于每一对选定的共现词,我们导出一个加权向量表示,该表示强调基础语义中基于动词的功能方面。探索这些向量潜在价值的初步实验给了我们非常好的结果。该项目的更大目标是通过挖掘生物医学文献中潜在的知识来为知识发现研究做出贡献。它还旨在提供一种方法,能够通过从所有MEDLINE中导出的词对来暗示跨学科联系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验