Suppr超能文献

PubMedMiner:挖掘并可视化PubMed中基于医学主题词(MeSH)的关联

PubMedMiner: Mining and Visualizing MeSH-based Associations in PubMed.

作者信息

Zhang Yucan, Sarkar Indra Neil, Chen Elizabeth S

机构信息

Department of Computer Science, Univ. of Vermont, Burlington, VT ; Department of Plant Biology, Univ. of Vermont, Burlington, VT.

Department of Computer Science, Univ. of Vermont, Burlington, VT ; Department of Microbiology & Molecular Genetics, Univ. of Vermont, Burlington, VT ; Center for Clinical & Translational Science, Univ. of Vermont, Burlington, VT.

出版信息

AMIA Annu Symp Proc. 2014 Nov 14;2014:1990-9. eCollection 2014.

Abstract

The exponential growth of biomedical literature provides the opportunity to develop approaches for facilitating the identification of possible relationships between biomedical concepts. Indexing by Medical Subject Headings (MeSH) represent high-quality summaries of much of this literature that can be used to support hypothesis generation and knowledge discovery tasks using techniques such as association rule mining. Based on a survey of literature mining tools, a tool implemented using Ruby and R - PubMedMiner - was developed in this study for mining and visualizing MeSH-based associations for a set of MEDLINE articles. To demonstrate PubMedMiner's functionality, a case study was conducted that focused on identifying and comparing comorbidities for asthma in children and adults. Relative to the tools surveyed, the initial results suggest that PubMedMiner provides complementary functionality for summarizing and comparing topics as well as identifying potentially new knowledge.

摘要

生物医学文献的指数级增长为开发促进识别生物医学概念之间可能关系的方法提供了机会。医学主题词表(MeSH)索引代表了这些文献中许多高质量的摘要,可用于支持使用关联规则挖掘等技术的假设生成和知识发现任务。基于对文献挖掘工具的调查,本研究开发了一种使用Ruby和R实现的工具——PubMedMiner,用于挖掘和可视化一组MEDLINE文章中基于MeSH的关联。为了展示PubMedMiner的功能,进行了一项案例研究,重点是识别和比较儿童和成人哮喘的合并症。相对于所调查的工具,初步结果表明PubMedMiner在总结和比较主题以及识别潜在新知识方面提供了补充功能。

相似文献

1
PubMedMiner: Mining and Visualizing MeSH-based Associations in PubMed.
AMIA Annu Symp Proc. 2014 Nov 14;2014:1990-9. eCollection 2014.
2
How to improve your PubMed/MEDLINE searches: 3. advanced searching, MeSH and My NCBI.
J Telemed Telecare. 2014 Mar;20(2):102-12. doi: 10.1177/1357633X13519036.
3
MeSHy: Mining unanticipated PubMed information using frequencies of occurrences and concurrences of MeSH terms.
J Biomed Inform. 2011 Dec;44(6):919-26. doi: 10.1016/j.jbi.2011.05.009. Epub 2011 Jun 13.
4
MeSHSim: An R/Bioconductor package for measuring semantic similarity over MeSH headings and MEDLINE documents.
J Bioinform Comput Biol. 2015 Dec;13(6):1542002. doi: 10.1142/S0219720015420020. Epub 2015 Sep 9.
5
Research Trend Visualization by MeSH Terms from PubMed.
Int J Environ Res Public Health. 2018 May 30;15(6):1113. doi: 10.3390/ijerph15061113.
6
Genealogical-based method for multiple ontology self-extension in MeSH.
IEEE Trans Nanobioscience. 2014 Jun;13(2):124-30. doi: 10.1109/TNB.2014.2320413.
7
Web-Based Visualization of MeSH-Based PubMed/MEDLINE Statistics.
Stud Health Technol Inform. 2019 Aug 21;264:1490-1491. doi: 10.3233/SHTI190499.
8
Analysis of MeSH Indexing Patterns and Frequency of Predicates.
Stud Health Technol Inform. 2018;247:666-670.
9
FullMeSH: improving large-scale MeSH indexing with full text.
Bioinformatics. 2020 Mar 1;36(5):1533-1541. doi: 10.1093/bioinformatics/btz756.
10
Automated acquisition of disease drug knowledge from biomedical and clinical documents: an initial study.
J Am Med Inform Assoc. 2008 Jan-Feb;15(1):87-98. doi: 10.1197/jamia.M2401. Epub 2007 Oct 18.

引用本文的文献

2
Extracting Significant Comorbid Diseases from MeSH Index of PubMed.
Methods Mol Biol. 2022;2496:283-299. doi: 10.1007/978-1-0716-2305-3_15.
3
How to catch trends using MeSH terms analysis?
Scientometrics. 2022;127(4):1953-1967. doi: 10.1007/s11192-022-04292-y. Epub 2022 Feb 21.
5
Rapid and Reusable Text Visualization and Exploration Development with DELVE.
AMIA Jt Summits Transl Sci Proc. 2017 Jul 26;2017:139-148. eCollection 2017.
6
HNdb: an integrated database of gene and protein information on head and neck squamous cell carcinoma.
Database (Oxford). 2016 Mar 24;2016. doi: 10.1093/database/baw026. Print 2016.

本文引用的文献

1
A genome-wide MeSH-based literature mining system predicts implicit gene-to-gene relationships and networks.
BMC Syst Biol. 2013 Oct 16;7 Suppl 3(Suppl 3):S9. doi: 10.1186/1752-0509-7-S3-S9.
2
Toward creation of a cancer drug toxicity knowledge base: automatically extracting cancer drug-side effect relationships from the literature.
J Am Med Inform Assoc. 2014 Jan-Feb;21(1):90-6. doi: 10.1136/amiajnl-2012-001584. Epub 2013 May 18.
3
A knowledge-driven conditional approach to extract pharmacogenomics specific drug-gene relationships from free text.
J Biomed Inform. 2012 Oct;45(5):827-34. doi: 10.1016/j.jbi.2012.04.011. Epub 2012 Apr 27.
4
MeSH: a window into full text for document summarization.
Bioinformatics. 2011 Jul 1;27(13):i120-8. doi: 10.1093/bioinformatics/btr223.
5
Recommending MeSH terms for annotating biomedical articles.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):660-7. doi: 10.1136/amiajnl-2010-000055. Epub 2011 May 25.
7
PubMed and beyond: a survey of web tools for searching biomedical literature.
Database (Oxford). 2011 Jan 18;2011:baq036. doi: 10.1093/database/baq036. Print 2011.
8
Cross-domain neurobiology data integration and exploration.
BMC Genomics. 2010 Dec 1;11 Suppl 3(Suppl 3):S6. doi: 10.1186/1471-2164-11-S3-S6.
9
10
An automated technique for identifying associations between medications, laboratory results and problems.
J Biomed Inform. 2010 Dec;43(6):891-901. doi: 10.1016/j.jbi.2010.09.009. Epub 2010 Sep 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验