Suppr超能文献

PubMedMiner:挖掘并可视化PubMed中基于医学主题词(MeSH)的关联

PubMedMiner: Mining and Visualizing MeSH-based Associations in PubMed.

作者信息

Zhang Yucan, Sarkar Indra Neil, Chen Elizabeth S

机构信息

Department of Computer Science, Univ. of Vermont, Burlington, VT ; Department of Plant Biology, Univ. of Vermont, Burlington, VT.

Department of Computer Science, Univ. of Vermont, Burlington, VT ; Department of Microbiology & Molecular Genetics, Univ. of Vermont, Burlington, VT ; Center for Clinical & Translational Science, Univ. of Vermont, Burlington, VT.

出版信息

AMIA Annu Symp Proc. 2014 Nov 14;2014:1990-9. eCollection 2014.

Abstract

The exponential growth of biomedical literature provides the opportunity to develop approaches for facilitating the identification of possible relationships between biomedical concepts. Indexing by Medical Subject Headings (MeSH) represent high-quality summaries of much of this literature that can be used to support hypothesis generation and knowledge discovery tasks using techniques such as association rule mining. Based on a survey of literature mining tools, a tool implemented using Ruby and R - PubMedMiner - was developed in this study for mining and visualizing MeSH-based associations for a set of MEDLINE articles. To demonstrate PubMedMiner's functionality, a case study was conducted that focused on identifying and comparing comorbidities for asthma in children and adults. Relative to the tools surveyed, the initial results suggest that PubMedMiner provides complementary functionality for summarizing and comparing topics as well as identifying potentially new knowledge.

摘要

生物医学文献的指数级增长为开发促进识别生物医学概念之间可能关系的方法提供了机会。医学主题词表(MeSH)索引代表了这些文献中许多高质量的摘要,可用于支持使用关联规则挖掘等技术的假设生成和知识发现任务。基于对文献挖掘工具的调查,本研究开发了一种使用Ruby和R实现的工具——PubMedMiner,用于挖掘和可视化一组MEDLINE文章中基于MeSH的关联。为了展示PubMedMiner的功能,进行了一项案例研究,重点是识别和比较儿童和成人哮喘的合并症。相对于所调查的工具,初步结果表明PubMedMiner在总结和比较主题以及识别潜在新知识方面提供了补充功能。

相似文献

5
Research Trend Visualization by MeSH Terms from PubMed.基于 PubMed 的 MeSH 术语的研究趋势可视化。
Int J Environ Res Public Health. 2018 May 30;15(6):1113. doi: 10.3390/ijerph15061113.

引用本文的文献

3
How to catch trends using MeSH terms analysis?如何使用医学主题词表(MeSH)分析来捕捉趋势?
Scientometrics. 2022;127(4):1953-1967. doi: 10.1007/s11192-022-04292-y. Epub 2022 Feb 21.

本文引用的文献

4
MeSH: a window into full text for document summarization.MeSH:全文检索的窗口,用于文档摘要。
Bioinformatics. 2011 Jul 1;27(13):i120-8. doi: 10.1093/bioinformatics/btr223.
5
Recommending MeSH terms for annotating biomedical articles.推荐用于标注生物医学文章的 MeSH 术语。
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):660-7. doi: 10.1136/amiajnl-2010-000055. Epub 2011 May 25.
8
Cross-domain neurobiology data integration and exploration.跨领域神经生物学数据的整合与探索。
BMC Genomics. 2010 Dec 1;11 Suppl 3(Suppl 3):S6. doi: 10.1186/1471-2164-11-S3-S6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验