Suppr超能文献

用于监测的临床数据收集与整合。

Collection and integration of clinical data for surveillance.

作者信息

Lober William B, Baer Atar, Karras Bryant T, Duchin Jeffery S

机构信息

Biomedical & Health Informatics, School of Medicine, University of Washington, Seattle, USA.

出版信息

Stud Health Technol Inform. 2004;107(Pt 2):1211-5.

Abstract

OBJECTIVE

The syndromic surveillance project at Public Health-Seattle & King County incorporates several data sources, including emergency department and primary care visit data collected and normalized through an automated mechanism. We describe significant changes made in this "second generation" of our system to improve data quality while complying with privacy and state public health reporting regulations.

METHODS/RESULTS: The system uses de-identified visit and patient numbers to assure data accuracy, while shielding patient identity. Presently, we have 124,000 basic visit records (used to generate stratified denominators), and 29,000 surveillance records, from four emergency departments and a primary care clinic network. The system is capable of producing syndrome-clustered data sets for analysis.

DISCUSSION

We have incorporated data collection techniques such as automated querying, report parsing, and HL7 electronic data interchange. We are expanding the system to include greater population coverage, and developing an understanding how to implement data collections more rapidly at individual hospital sites, as well as how best to prepare the data for analysis.

摘要

目的

西雅图及金县公共卫生部门的症状监测项目整合了多个数据源,包括通过自动机制收集并标准化的急诊科和初级保健就诊数据。我们描述了该系统“第二代”所做的重大改进,以提高数据质量,同时遵守隐私和州公共卫生报告法规。

方法/结果:该系统使用去标识化的就诊和患者编号来确保数据准确性,同时保护患者身份。目前,我们有来自四个急诊科和一个初级保健诊所网络的124,000条基本就诊记录(用于生成分层分母)和29,000条监测记录。该系统能够生成综合征聚集数据集用于分析。

讨论

我们采用了自动查询、报告解析和HL7电子数据交换等数据收集技术。我们正在扩大系统覆盖范围,以涵盖更多人群,并深入了解如何在各个医院更快地进行数据收集,以及如何最好地准备数据分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验