Suppr超能文献

用于公共卫生监测的分布式数据处理

Distributed data processing for public health surveillance.

作者信息

Lazarus Ross, Yih Katherine, Platt Richard

机构信息

Channing Laboratory, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

出版信息

BMC Public Health. 2006 Sep 19;6:235. doi: 10.1186/1471-2458-6-235.

Abstract

BACKGROUND

Many systems for routine public health surveillance rely on centralized collection of potentially identifiable, individual, identifiable personal health information (PHI) records. Although individual, identifiable patient records are essential for conditions for which there is mandated reporting, such as tuberculosis or sexually transmitted diseases, they are not routinely required for effective syndromic surveillance. Public concern about the routine collection of large quantities of PHI to support non-traditional public health functions may make alternative surveillance methods that do not rely on centralized identifiable PHI databases increasingly desirable.

METHODS

The National Bioterrorism Syndromic Surveillance Demonstration Program (NDP) is an example of one alternative model. All PHI in this system is initially processed within the secured infrastructure of the health care provider that collects and holds the data, using uniform software distributed and supported by the NDP. Only highly aggregated count data is transferred to the datacenter for statistical processing and display.

RESULTS

Detailed, patient level information is readily available to the health care provider to elucidate signals observed in the aggregated data, or for ad hoc queries. We briefly describe the benefits and disadvantages associated with this distributed processing model for routine automated syndromic surveillance.

CONCLUSION

For well-defined surveillance requirements, the model can be successfully deployed with very low risk of inadvertent disclosure of PHI--a feature that may make participation in surveillance systems more feasible for organizations and more appealing to the individuals whose PHI they hold. It is possible to design and implement distributed systems to support non-routine public health needs if required.

摘要

背景

许多常规公共卫生监测系统依赖于集中收集潜在可识别的个人健康信息(PHI)记录。虽然对于诸如结核病或性传播疾病等有强制报告要求的疾病,个体可识别的患者记录至关重要,但有效的症状监测通常并不需要这些记录。公众对为支持非传统公共卫生功能而常规收集大量PHI的担忧,可能使不依赖集中式可识别PHI数据库的替代监测方法越来越受欢迎。

方法

国家生物恐怖主义症状监测示范项目(NDP)就是一种替代模式的例子。该系统中的所有PHI最初都在收集和保存数据的医疗服务提供者的安全基础设施内进行处理,使用由NDP分发和支持的统一软件。只有高度汇总的计数数据被传输到数据中心进行统计处理和显示。

结果

医疗服务提供者可以轻松获取详细的患者层面信息,以阐明在汇总数据中观察到的信号,或用于临时查询。我们简要描述了这种用于常规自动症状监测的分布式处理模型的优缺点。

结论

对于明确的监测要求,该模型可以成功部署,无意中泄露PHI的风险非常低——这一特点可能使组织更有可能参与监测系统,也更吸引持有其PHI的个人。如有需要,有可能设计和实施分布式系统以支持非常规公共卫生需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bad/1618842/1196d7fb43a7/1471-2458-6-235-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验