Robbe Catherine, Capon Calliope, Coddeville Bernadette, Michalski Jean-Claude
Unité Mixte de Recherche CNRS/USTL 8576, Glycobiologie Structurale et Fonctionnelle, IFR 118, Université des Sciences et Technologies de Lille 1, 59655 Villeneuve d'Ascq Cedex, France.
Biochem J. 2004 Dec 1;384(Pt 2):307-16. doi: 10.1042/BJ20040605.
Purified human mucins from different parts of the intestinal tract (ileum, cecum, transverse and sigmoid colon and rectum) were isolated from two individuals with blood group ALe(b) (A-Lewis(b)). After alkaline borohydride treatment the released oligosaccharides were structurally characterized by nano-ESI Q-TOF MS/MS (electrospray ionization quadrupole time-of-flight tandem MS) without prior fractionation or derivatization. More than 100 different oligosaccharides, with up to ten monosaccharide residues, were identified using this technique. Oligosaccharides based on core 3 structures, GlcNAc(beta1-3)GalNAc (where GlcNAc is N-acetyl-D-glucosamine and GalNAc is N-acetylgalactosamine), were widely distributed in human intestinal mucins. Core 5 structures, GalNAc(alpha1-3)GalNAc, were also recovered in all fractions. Moreover, a comparison of the oligosaccharide repertoire, with respect to size, diversity and expression of glycans and terminal epitopes, showed a high level of mucin-specific glycosylation: highly fucosylated glycans, found specifically in the small intestine, were mainly based on core 4 structures, GlcNAc-(beta1-3)[GlcNAc(beta1-6)]GalNAc, whereas the sulpho-Le(X) determinant carrying core 2 glycans, Gal(beta1-3)[GlcNAc(beta1-6)]-GalNAc (where Gal is galactose), was recovered mainly in the distal colon. Blood group H and A antigenic determinants were present exclusively in the ileum and cecum, whereas blood group Sd(a)/Cad related epitopes, GalNAc(beta1-4)[NeuAc(alpha2-3)]Gal (where NeuAc is N-acetylneuraminate), were found to increase along the length of the colon. Our findings suggest that mucins create an enormous repertoire of potential binding sites for micro-organisms that could explain the regio-specific colonization of bacteria in the human intestinal tract.
从两名 ALe(b)血型(A-路易斯(b))个体中分离出了来自肠道不同部位(回肠、盲肠、横结肠、乙状结肠和直肠)的纯化人黏蛋白。经过碱性硼氢化物处理后,释放出的寡糖在无需预先分级或衍生化的情况下,通过纳米电喷雾电离四极杆飞行时间串联质谱(nano-ESI Q-TOF MS/MS)对其结构进行了表征。使用该技术鉴定出了 100 多种不同的寡糖,其单糖残基数量多达 10 个。基于核心 3 结构 GlcNAc(β1-3)GalNAc(其中 GlcNAc 是 N-乙酰-D-葡萄糖胺,GalNAc 是 N-乙酰半乳糖胺)的寡糖广泛分布于人肠道黏蛋白中。核心 5 结构 GalNAc(α1-3)GalNAc 在所有组分中也有发现。此外,对寡糖库在聚糖大小、多样性以及末端表位的表达方面进行比较,结果显示出高水平的黏蛋白特异性糖基化:在小肠中特异性发现的高度岩藻糖基化聚糖主要基于核心 4 结构 GlcNAc-(β1-3)[GlcNAc(β1-6)]GalNAc,而携带硫酸化-Le(X)决定簇的核心 2 聚糖 Gal(β1-3)[GlcNAc(β1-6)]-GalNAc(其中 Gal 是半乳糖)主要在远端结肠中被发现。血型 H 和 A 抗原决定簇仅存在于回肠和盲肠中,而与血型 Sd(a)/Cad 相关的表位 GalNAc(β1-4)[NeuAc(α2-3)]Gal(其中 NeuAc 是 N-乙酰神经氨酸)则沿结肠长度增加。我们的研究结果表明,黏蛋白为微生物创造了大量潜在的结合位点,这可以解释细菌在人肠道中的区域特异性定殖。