Leloup Jean-Christophe, Goldbeter Albert
Unité de Chronobiologie théorique, Faculté des Sciences, Université Libre de Bruxelles, Campus Plaine, C.P. 231, B-1050 Brussels, Belgium.
J Theor Biol. 2004 Oct 21;230(4):541-62. doi: 10.1016/j.jtbi.2004.04.040.
We extend the study of a computational model recently proposed for the mammalian circadian clock (Proc. Natl Acad. Sci. USA 100 (2003) 7051). The model, based on the intertwined positive and negative regulatory loops involving the Per, Cry, Bmal1, and Clock genes, can give rise to sustained circadian oscillations in conditions of continuous darkness. These limit cycle oscillations correspond to circadian rhythms autonomously generated by suprachiasmatic nuclei and by some peripheral tissues. By using different sets of parameter values producing circadian oscillations, we compare the effect of the various parameters and show that both the occurrence and the period of the oscillations are generally most sensitive to parameters related to synthesis or degradation of Bmal1 mRNA and BMAL1 protein. The mechanism of circadian oscillations relies on the formation of an inactive complex between PER and CRY and the activators CLOCK and BMAL1 that enhance Per and Cry expression. Bifurcation diagrams and computer simulations nevertheless indicate the possible existence of a second source of oscillatory behavior. Thus, sustained oscillations might arise from the sole negative autoregulation of Bmal1 expression. This second oscillatory mechanism may not be functional in physiological conditions, and its period need not necessarily be circadian. When incorporating the light-induced expression of the Per gene, the model accounts for entrainment of the oscillations by light-dark (LD) cycles. Long-term suppression of circadian oscillations by a single light pulse can occur in the model when a stable steady state coexists with a stable limit cycle. The phase of the oscillations upon entrainment in LD critically depends on the parameters that govern the level of CRY protein. Small changes in the parameters governing CRY levels can shift the peak in Per mRNA from the L to the D phase, or can prevent entrainment. The results are discussed in relation to physiological disorders of the sleep-wake cycle linked to perturbations of the human circadian clock, such as the familial advanced sleep phase syndrome or the non-24h sleep-wake syndrome.
我们扩展了最近提出的用于哺乳动物昼夜节律时钟的计算模型的研究(《美国国家科学院院刊》100 (2003) 7051)。该模型基于涉及Per、Cry、Bmal1和Clock基因的相互交织的正负调节回路,在持续黑暗条件下可产生持续的昼夜节律振荡。这些极限环振荡对应于由视交叉上核和一些外周组织自主产生的昼夜节律。通过使用产生昼夜节律振荡的不同参数值集,我们比较了各种参数的影响,并表明振荡的发生和周期通常对与Bmal1 mRNA和BMAL1蛋白的合成或降解相关的参数最为敏感。昼夜节律振荡的机制依赖于PER和CRY与激活剂CLOCK和BMAL1之间形成无活性复合物,后者增强Per和Cry的表达。然而,分岔图和计算机模拟表明可能存在第二种振荡行为来源。因此,持续振荡可能仅源于Bmal1表达的负自调节。这种第二种振荡机制在生理条件下可能不起作用,其周期也不一定是昼夜节律的。当纳入Per基因的光诱导表达时,该模型解释了光暗(LD)循环对振荡的同步作用。当稳定稳态与稳定极限环共存时,模型中单个光脉冲可导致昼夜节律振荡的长期抑制。在LD中同步时振荡的相位关键取决于控制CRY蛋白水平的参数。控制CRY水平的参数的微小变化可使Per mRNA的峰值从L期转移到D期,或可阻止同步。我们结合与人类昼夜节律时钟紊乱相关的睡眠 - 觉醒周期的生理障碍,如家族性早睡相位综合征或非24小时睡眠 - 觉醒综合征,对结果进行了讨论。