Shevchenko Elena V, Talapin Dmitri V, Schnablegger Heimo, Kornowski Andreas, Festin Orjan, Svedlindh Peter, Haase Markus, Weller Horst
Contribution from the Institute of Physical Chemistry, University of Hamburg, D-20146 Hamburg, Germany.
J Am Chem Soc. 2003 Jul 30;125(30):9090-101. doi: 10.1021/ja029937l.
High quality CoPt(3) nanocrystals were synthesized via simultaneous reduction of platinum acetylacetonate and thermodecomposition of cobalt carbonyl in the presence of 1-adamantanecarboxylic acid and hexadecylamine as stabilizing agents. The high flexibility and reproducibility of the synthesis allows us to consider CoPt(3) nanocrystals as a model system for the hot organometallic synthesis of metal nanoparticles. Different experimental conditions (reaction temperature, concentration of stabilizing agents, ratio between cobalt and platinum precursors, etc.) have been investigated to reveal the processes governing the formation of the metal alloy nanocrystals. It was found that CoPt(3) nanocrystals nucleate and grow up to their final size at an early stage of the synthesis with no Ostwald ripening observed upon further heating. In this case, the nanocrystal size can be controlled only via proper balance between the rates for nucleation and for growth from the molecular precursors. Thus, the size of CoPt(3) nanocrystals can be precisely tuned from approximately 3 nm up to approximately 18 nm in a predictable and reproducible way. The mechanism of homogeneous nucleation, evolution of the nanocrystal ensemble in the absence of Ostwald ripening, nanocrystal faceting, and size-dependent magnetic properties are investigated and discussed on the example of CoPt(3) magnetic alloy nanocrystals. The developed approach was found to be applicable to other systems, e.g., FePt and CoPd(2) magnetic alloy nanocrystals.
在1-金刚烷羧酸和十六烷基胺作为稳定剂的存在下,通过同时还原乙酰丙酮铂和热分解羰基钴合成了高质量的CoPt(3)纳米晶体。该合成方法具有高度的灵活性和可重复性,使我们能够将CoPt(3)纳米晶体视为金属纳米颗粒热有机金属合成的模型体系。研究了不同的实验条件(反应温度、稳定剂浓度、钴和铂前驱体的比例等),以揭示控制金属合金纳米晶体形成的过程。结果发现,CoPt(3)纳米晶体在合成的早期阶段成核并生长到最终尺寸,进一步加热时未观察到奥斯特瓦尔德熟化现象。在这种情况下,纳米晶体的尺寸只能通过分子前驱体的成核速率和生长速率之间的适当平衡来控制。因此,CoPt(3)纳米晶体能够以可预测和可重复的方式精确地从约3nm调整到约18nm。以CoPt(3)磁性合金纳米晶体为例,研究并讨论了均匀成核机制、在无奥斯特瓦尔德熟化情况下纳米晶体集合体的演化、纳米晶体的刻面以及尺寸依赖的磁性。已发现所开发的方法适用于其他体系,例如FePt和CoPd(2)磁性合金纳米晶体。