Suppr超能文献

金属、氧化物和硫族化物均匀尺寸纳米晶体的胶体化学合成及形成动力学。

Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.

作者信息

Kwon Soon Gu, Hyeon Taeghwan

机构信息

National Creative Research Initiative Center for Oxide Nanocrystalline Materials and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-744, Korea.

出版信息

Acc Chem Res. 2008 Dec;41(12):1696-709. doi: 10.1021/ar8000537.

Abstract

Nanocrystals exhibit interesting electrical, optical, magnetic, and chemical properties not achieved by their bulk counterparts. Consequently, to fully exploit the potential of nanocrystals, the synthesis of nanocrystals must focus on producing materials with uniform size and shape. Top-down physical processes can produce large quantities of nanocrystals, but controlling the size is difficult with these methods. On the other hand, colloidal chemical synthetic methods can produce uniform nanocrystals with a controlled particle size. In this Account, we present our synthesis of uniform nanocrystals of various shapes and materials, and we discuss the kinetics of nanocrystal formation. We employed four different synthetic approaches including thermal decomposition, nonhydrolytic sol-gel reactions, thermal reduction, and use of reactive chalcogen reagents. We synthesized uniform oxide nanocrystals via heat-up methods. This method involved slowly heat-up reaction mixtures composed of metal precursors, surfactants, and solvents from room temperature to high temperature. We then held reaction mixtures at an aging temperature for a few minutes to a few hours. Kinetics studies revealed a three-step mechanism for the synthesis of nanocrystals through the heat-up method with size distribution control. First, as metal precursors thermally decompose, monomers accumulate. At the aging temperature, burst nucleation occurs rapidly; at the end of this second phase, nucleation stops, but continued diffusion-controlled growth leads to size focusing to produce uniform nanocrystals. We used nonhydrolytic sol-gel reactions to synthesize various transition metal oxide nanocrystals. We employed ester elimination reactions for the synthesis of ZnO and TiO(2) nanocrystals. Uniform Pd nanoparticles were synthesized via a thermal reduction reaction induced by heating up a mixture of Pd(acac)(2), tri-n-octylphosphine, and oleylamine to the aging temperature. Similarly, we synthesized nanoparticles of copper and nickel using metal(II) acetylacetonates. Ni/Pd core/shell nanoparticles were synthesized by simply heating the reaction mixture composed of acetylacetonates of nickel and palladium. Using alternative chalcogen reagents, we synthesized uniform nanocrystals of various metal chalcogenides. Uniform nanocrystals of PbS, ZnS, CdS, and MnS were obtained by heating reaction mixtures composed of metal chlorides and sulfur dissolved in oleylamine. In the future, a detailed understanding of nanocrystal formation kinetics and synthetic chemistry will lead to the synthesis of uniform nanocrystals with controlled size, shape, and composition. In particular, the synthesis of uniform nanocrystals of doped materials, core/shell materials, and multicomponent materials is still a challenge. We expect that these uniformly sized nanocrystals will find important applications in areas including information technology, biomedicine, and energy/environmental technology.

摘要

纳米晶体展现出其块状对应物所不具备的有趣的电学、光学、磁学和化学性质。因此,为了充分发挥纳米晶体的潜力,纳米晶体的合成必须专注于生产尺寸和形状均匀的材料。自上而下的物理过程可以生产大量纳米晶体,但用这些方法控制尺寸很困难。另一方面,胶体化学合成方法可以生产出粒径可控的均匀纳米晶体。在本综述中,我们介绍了我们合成各种形状和材料的均匀纳米晶体的方法,并讨论了纳米晶体形成的动力学。我们采用了四种不同的合成方法,包括热分解、非水解溶胶 - 凝胶反应、热还原以及使用活性硫属元素试剂。我们通过升温方法合成了均匀的氧化物纳米晶体。该方法包括将由金属前驱体、表面活性剂和溶剂组成的反应混合物从室温缓慢加热至高温。然后将反应混合物在老化温度下保持几分钟到几小时。动力学研究揭示了通过升温方法合成纳米晶体并控制尺寸分布的三步机制。首先,随着金属前驱体热分解,单体积累。在老化温度下,快速发生爆发成核;在第二阶段结束时,成核停止,但持续的扩散控制生长导致尺寸聚焦,从而产生均匀的纳米晶体。我们使用非水解溶胶 - 凝胶反应合成了各种过渡金属氧化物纳米晶体。我们采用酯消除反应合成了ZnO和TiO₂纳米晶体。通过将Pd(acac)₂、三正辛基膦和油胺的混合物加热至老化温度引发热还原反应,合成了均匀的Pd纳米颗粒。类似地,我们使用金属(II)乙酰丙酮盐合成了铜和镍的纳米颗粒。通过简单加热由镍和钯的乙酰丙酮盐组成的反应混合物,合成了Ni/Pd核壳纳米颗粒。使用替代的硫属元素试剂,我们合成了各种金属硫属化合物的均匀纳米晶体。通过加热由溶解在油胺中的金属氯化物和硫组成的反应混合物,获得了PbS、ZnS、CdS和MnS的均匀纳米晶体。未来,对纳米晶体形成动力学和合成化学的详细理解将导致合成尺寸、形状和组成可控的均匀纳米晶体。特别是,掺杂材料、核壳材料和多组分材料的均匀纳米晶体的合成仍然是一个挑战。我们预计这些尺寸均匀的纳米晶体将在信息技术、生物医学以及能源/环境技术等领域找到重要应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验