Suppr超能文献

将微阵列数据转化为结直肠癌临床相关诊断信息的统计方法。

Statistical methods of translating microarray data into clinically relevant diagnostic information in colorectal cancer.

作者信息

Kim Byung Soo, Kim Inyoung, Lee Sunho, Kim Sangcheol, Rha Sun Young, Chung Hyun Cheol

机构信息

Department of Applied Statistics, College of Medicine, Yonsei University Seoul, South Korea.

出版信息

Bioinformatics. 2005 Feb 15;21(4):517-28. doi: 10.1093/bioinformatics/bti029. Epub 2004 Sep 16.

Abstract

MOTIVATION

It is a common practice in cancer microarray experiments that a normal tissue is collected from the same individual from whom the tumor tissue was taken. The indirect design is usually adopted for the experiment that uses a common reference RNA hybridized both to normal and tumor tissues. However, it is often the case that the test material is not large enough for the experimenter to extract enough RNA to conduct the microarray experiment. Hence, collecting n cases does not necessarily end up with a matched pair sample of size n. Instead we usually have a matched pair sample of size n1, and two independent samples of sizes n2 and n3, respectively, for 'reference versus normal tissue only' and 'reference versus tumor tissue only' hybridizations (n=n1 + n2 + n3). Standard statistical methods need to be modified and new statistical procedures are developed for analyzing this mixed dataset.

RESULTS

We propose a new test statistic, t3, as a means of combining all the information in the mixed dataset for detecting differentially expressed (DE) genes between normal and tumor tissues. We employed the extended receiver operating characteristic approach to the mixed dataset. We devised a measure of disagreement between a RT-PCR experiment and a microarray experiment. Hotelling's T2 statistic is employed to detect a set of DE genes and its prediction rate is compared with the prediction rate of a univariate procedure. We observe that Hotelling's T2 statistic detects DE genes more efficiently than a univariate procedure and that further research is warranted on the formal test procedure using Hotelling's T2 statistic.

CONTACT

bskim@yonsei.ac.kr.

摘要

动机

在癌症微阵列实验中,从采集肿瘤组织的同一个体采集正常组织是一种常见做法。对于使用与正常组织和肿瘤组织均杂交的共同参考RNA的实验,通常采用间接设计。然而,实验材料往往不够大,实验者无法提取足够的RNA来进行微阵列实验。因此,收集n个病例不一定最终得到大小为n的匹配对样本。相反,我们通常有一个大小为n1的匹配对样本,以及分别用于“仅参考与正常组织”和“仅参考与肿瘤组织”杂交的大小为n2和n3的两个独立样本(n = n1 + n2 + n3)。需要对标准统计方法进行修改,并开发新的统计程序来分析这个混合数据集。

结果

我们提出了一种新的检验统计量t3,作为一种合并混合数据集中所有信息以检测正常组织和肿瘤组织之间差异表达(DE)基因的方法。我们对混合数据集采用了扩展的接收者操作特征方法。我们设计了一种衡量逆转录聚合酶链反应实验和微阵列实验之间不一致性的方法。采用霍特林T2统计量来检测一组DE基因,并将其预测率与单变量程序的预测率进行比较。我们观察到,霍特林T2统计量比单变量程序更有效地检测DE基因,并且有必要对使用霍特林T2统计量的正式检验程序进行进一步研究。

联系方式

bskim@yonsei.ac.kr

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验