Suppr超能文献

长双歧杆菌进行果糖分解代谢需要一种果糖激酶(Frk;ATP:D-果糖6-磷酸转移酶,EC 2.7.1.4)。

Bifidobacterium longum requires a fructokinase (Frk; ATP:D-fructose 6-phosphotransferase, EC 2.7.1.4) for fructose catabolism.

作者信息

Caescu Cristina I, Vidal Olivier, Krzewinski Frédéric, Artenie Vlad, Bouquelet Stéphane

机构信息

Unité de Glycobiologie Structurale et Fonctionnelle, UMR CNRS-USTL 8576, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France.

出版信息

J Bacteriol. 2004 Oct;186(19):6515-25. doi: 10.1128/JB.186.19.6515-6525.2004.

Abstract

Although the ability of Bifidobacterium spp. to grow on fructose as a unique carbon source has been demonstrated, the enzyme(s) needed to incorporate fructose into a catabolic pathway has hitherto not been defined. This work demonstrates that intracellular fructose is metabolized via the fructose-6-P phosphoketolase pathway and suggests that a fructokinase (Frk; EC 2.7.1.4) is the enzyme that is necessary and sufficient for the assimilation of fructose into this catabolic route in Bifidobacterium longum. The B. longum A10C fructokinase-encoding gene (frk) was expressed in Escherichia coli from a pET28 vector with an attached N-terminal histidine tag. The expressed enzyme was purified by affinity chromatography on a Co(2+)-based column, and the pH and temperature optima were determined. A biochemical analysis revealed that Frk displays the same affinity for fructose and ATP (Km(fructose) = 0.739 +/- 0.18 mM and Km(ATP) = 0.756 +/- 0.08 mM), is highly specific for D-fructose, and is inhibited by an excess of ATP (>12 mM). It was also found that frk is inducible by fructose and is subject to glucose-mediated repression. Consequently, this work presents the first characterization at the molecular and biochemical level of a fructokinase from a gram-positive bacterium that is highly specific for D-fructose.

摘要

尽管已证明双歧杆菌属能够以果糖作为唯一碳源生长,但迄今为止,将果糖纳入分解代谢途径所需的酶尚未明确。这项研究表明,细胞内的果糖通过果糖-6-磷酸磷酸酮醇酶途径进行代谢,并表明果糖激酶(Frk;EC 2.7.1.4)是长双歧杆菌将果糖同化为该分解代谢途径所必需且足够的酶。长双歧杆菌A10C的果糖激酶编码基因(frk)在大肠杆菌中通过带有N端组氨酸标签的pET28载体表达。表达的酶通过基于Co(2+)的柱上亲和色谱法纯化,并测定了最适pH和温度。生化分析表明,Frk对果糖和ATP具有相同的亲和力(Km(果糖)=0.739±0.18 mM,Km(ATP)=0.756±0.08 mM),对D-果糖具有高度特异性,并受到过量ATP(>;12 mM)的抑制。还发现frk可被果糖诱导,并受到葡萄糖介导的阻遏。因此,这项工作首次在分子和生化水平上对一种来自革兰氏阳性细菌、对D-果糖具有高度特异性的果糖激酶进行了表征。

相似文献

3
7
Improved mannitol production by a random mutant of Leuconostoc pseudomesenteroides.
J Biotechnol. 2005 Mar 30;116(3):283-94. doi: 10.1016/j.jbiotec.2004.11.001. Epub 2005 Jan 7.
9
Crystal structure of a fructokinase homolog from Halothermothrix orenii.
J Struct Biol. 2010 Sep;171(3):397-401. doi: 10.1016/j.jsb.2010.05.007. Epub 2010 May 21.
10
Proteomics analysis of Bifidobacterium longum NCC2705 growing on glucose, fructose, mannose, xylose, ribose, and galactose.
Proteomics. 2011 Jul;11(13):2628-38. doi: 10.1002/pmic.201100035. Epub 2011 Jun 1.

引用本文的文献

1
Gene-trait matching among strains reveals various glycan metabolism loci including a strain-specific fucosyllactose utilization cluster.
Front Microbiol. 2025 May 12;16:1584694. doi: 10.3389/fmicb.2025.1584694. eCollection 2025.
2
Sulfate-Reducing Bacteria Isolated from an Oil Field in Kazakhstan and a Description of sp. nov.
Microorganisms. 2024 Dec 11;12(12):2552. doi: 10.3390/microorganisms12122552.
3
Regulation of Fructose Metabolism in Nonalcoholic Fatty Liver Disease.
Biomolecules. 2024 Jul 13;14(7):845. doi: 10.3390/biom14070845.
4
Deciphering the role of recurrent FAD-dependent enzymes in bacterial phosphonate catabolism.
iScience. 2023 Oct 4;26(11):108108. doi: 10.1016/j.isci.2023.108108. eCollection 2023 Nov 17.
5
The Microbial Degradation of Natural and Anthropogenic Phosphonates.
Molecules. 2023 Sep 29;28(19):6863. doi: 10.3390/molecules28196863.
6
The Pleiotropic Effects of Carbohydrate-Mediated Growth Rate Modifications in NCC 2705.
Microorganisms. 2023 Feb 26;11(3):588. doi: 10.3390/microorganisms11030588.
7
Milk glycan metabolism by intestinal bifidobacteria: insights from comparative genomics.
Crit Rev Biochem Mol Biol. 2022 Oct-Dec;57(5-6):562-584. doi: 10.1080/10409238.2023.2182272. Epub 2023 Mar 3.
8
Mechanism of high-mannose N-glycan breakdown and metabolism by Bifidobacterium longum.
Nat Chem Biol. 2023 Feb;19(2):218-229. doi: 10.1038/s41589-022-01202-4. Epub 2022 Nov 28.
9
Proteomic Signatures of Microbial Adaptation to the Highest Ultraviolet-Irradiation on Earth: Lessons From a Soil Actinobacterium.
Front Microbiol. 2022 Mar 15;13:791714. doi: 10.3389/fmicb.2022.791714. eCollection 2022.

本文引用的文献

1
Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis.
Biochemistry. 2004 Feb 10;43(5):1156-62. doi: 10.1021/bi0356395.
2
Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083.
Appl Microbiol Biotechnol. 2004 Aug;65(2):219-27. doi: 10.1007/s00253-003-1534-x. Epub 2004 Jan 22.
3
Detection of phosphate esters on paper chromatograms.
Nature. 1953 Mar 21;171(4351):529-30. doi: 10.1038/171529a0.
4
Purification and functional characterization of a novel alpha-L-arabinofuranosidase from Bifidobacterium longum B667.
Appl Environ Microbiol. 2003 Sep;69(9):5096-103. doi: 10.1128/AEM.69.9.5096-5103.2003.
7
Induction of sucrose utilization genes from Bifidobacterium lactis by sucrose and raffinose.
Appl Environ Microbiol. 2003 Jan;69(1):24-32. doi: 10.1128/AEM.69.1.24-32.2003.
8
Characterization of a purified beta-fructofuranosidase from Bifidobacterium infantis ATCC 15697.
Lett Appl Microbiol. 2002;35(6):462-7. doi: 10.1046/j.1472-765x.2002.01224.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验