Gerhardt Holger, Ruhrberg Christiana, Abramsson Alexandra, Fujisawa Hajime, Shima David, Betsholtz Christer
Department of Medical Biochemistry, University of Göteborg, Medicinaregatan 9A, Box 440, SE 405-30 Göteborg, Sweden.
Dev Dyn. 2004 Nov;231(3):503-9. doi: 10.1002/dvdy.20148.
Recent evidence indicates that sprouting angiogenesis in the central nervous system (CNS) is a guided process similar to the guidance of axons and insect tracheal tubes. Specialized tip cells of vessel sprouts navigate in response to local depots or gradients of vascular endothelial growth factor (VEGF-A). Neuropilin-1 (Nrp-1) is a transmembrane receptor with a repulsive function in axon guidance. Nrp-1 also binds the VEGF-A splice isoform VEGF165, stimulates angiogenesis, and is necessary for vascular development in the mouse. However, the morphogenetic events controlled by Nrp-1 in angiogenesis have not been defined. Here, we analyzed endothelial tip cell guidance in the CNS of Nrp-1-deficient mice. We focused our attention on the developing hindbrain, which is normally vascularized in a stereotyped manner. Initially, angiogenic sprouts extend along radial glia from the pial surface toward the ventricles, but in the subventricular zone (SVZ), they leave the radial path, turn laterally, and fuse to form a capillary plexus. Radial sprout elongation correlated with tip cell filopodia extensions along nestin-positive radial glial processes, but in the SVZ, the tip cell filopodia also extended perpendicular to the glial tracks and made contact with filopodia of the neighboring sprouts. In Nrp-1-deficient mice, the tip cell filopodia remained associated with the radial glia in the SVZ, which correlated with a failure of sprout turning and elongation across this region. As a result, the sprouts remained blind-ended forming glomeruloid tufts in the SVZ. These observations suggest that Nrp-1 plays an important role in allowing the endothelial tip cell filopodia to switch substrate and protrude in a new direction at a specific location in the developing brain.
最近的证据表明,中枢神经系统(CNS)中的新生血管形成是一个有导向的过程,类似于轴突和昆虫气管的导向。血管芽的特化顶端细胞会根据局部血管内皮生长因子(VEGF-A)的储存库或梯度进行导航。神经纤毛蛋白-1(Nrp-1)是一种跨膜受体,在轴突导向中具有排斥功能。Nrp-1还能结合VEGF-A的剪接异构体VEGF165,刺激血管生成,并且对小鼠的血管发育是必需的。然而,Nrp-1在血管生成中所控制的形态发生事件尚未明确。在此,我们分析了Nrp-1基因缺陷小鼠中枢神经系统中内皮顶端细胞的导向。我们将注意力集中在发育中的后脑,其正常情况下以一种固定的方式进行血管化。最初,血管生成芽沿着放射状胶质细胞从软脑膜表面向脑室延伸,但在脑室下区(SVZ),它们离开放射状路径,向侧面转向,并融合形成毛细血管丛。放射状芽的伸长与顶端细胞丝状伪足沿着巢蛋白阳性的放射状胶质细胞突起的延伸相关,但在SVZ中,顶端细胞丝状伪足也垂直于胶质细胞轨迹延伸,并与相邻芽的丝状伪足接触。在Nrp-1基因缺陷小鼠中,顶端细胞丝状伪足在SVZ中仍与放射状胶质细胞相关联,这与芽在该区域的转向和伸长失败相关。结果,芽在SVZ中保持盲端,形成类肾小球簇。这些观察结果表明,Nrp-1在允许内皮顶端细胞丝状伪足在发育中的大脑特定位置切换底物并向新方向突出方面发挥着重要作用。