Suppr超能文献

用于正电子发射断层扫描的正则化图像重建算法

Regularized image reconstruction algorithms for positron emission tomography.

作者信息

Chang Ji-Ho, Anderson John M M, Votaw John R

机构信息

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA.

出版信息

IEEE Trans Med Imaging. 2004 Sep;23(9):1165-75. doi: 10.1109/TMI.2004.831224.

Abstract

We develop algorithms for obtaining regularized estimates of emission means in positron emission tomography. The first algorithm iteratively minimizes a penalized maximum-likelihood (PML) objective function. It is based on standard de-coupled surrogate functions for the ML objective function and de-coupled surrogate functions for a certain class of penalty functions. As desired, the PML algorithm guarantees nonnegative estimates and monotonically decreases the PML objective function with increasing iterations. The second algorithm is based on an iteration dependent, de-coupled penalty function that introduces smoothing while preserving edges. For the purpose of making comparisons, the MLEM algorithm and a penalized weighted least-squares algorithm were implemented. In experiments using synthetic data and real phantom data, it was found that, for a fixed level of background noise, the contrast in the images produced by the proposed algorithms was the most accurate.

摘要

我们开发了用于在正电子发射断层扫描中获得发射均值正则化估计的算法。第一种算法迭代地最小化一个惩罚最大似然(PML)目标函数。它基于用于最大似然目标函数的标准解耦替代函数以及用于某类惩罚函数的解耦替代函数。如预期的那样,PML算法保证非负估计,并且随着迭代次数增加单调降低PML目标函数。第二种算法基于一个依赖于迭代的解耦惩罚函数,该函数在保留边缘的同时引入平滑。为了进行比较,实现了最大似然期望最大化(MLEM)算法和惩罚加权最小二乘算法。在使用合成数据和真实体模数据的实验中发现,对于固定水平的背景噪声,所提出算法生成的图像中的对比度是最准确的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验