Suppr超能文献

蛋白质内部电荷的稳定:水的渗透还是构象变化?

Stabilization of internal charges in a protein: water penetration or conformational change?

作者信息

Denisov Vladimir P, Schlessman Jamie L, García-Moreno E Bertrand, Halle Bertil

机构信息

Department of Biophysical Chemistry, Lund University, Lund, Sweden.

出版信息

Biophys J. 2004 Dec;87(6):3982-94. doi: 10.1529/biophysj.104.048454. Epub 2004 Sep 17.

Abstract

The ionizable amino acid side chains of proteins are usually located at the surface. However, in some proteins an ionizable group is embedded in an apolar internal region. Such buried ionizable groups destabilize the protein and may trigger conformational changes in response to pH variations. Because of the prohibitive energetic cost of transferring a charged group from water to an apolar medium, other stabilizing factors must be invoked, such as ionization-induced water penetration or structural changes. To examine the role of water penetration, we have measured the 17O and 2H magnetic relaxation dispersions (MRD) for the V66E and V66K mutants of staphylococcal nuclease, where glutamic acid and lysine residues are buried in predominantly apolar environments. At neutral pH, where these residues are uncharged, we find no evidence of buried water molecules near the mutation site. This contrasts with a previous cryogenic crystal structure of the V66E mutant, but is consistent with the room-temperature crystal structure reported here. MRD measurements at different pH values show that ionization of Glu-66 or Lys-66 is not accompanied by penetration of long-lived water molecules. On the other hand, the MRD data are consistent with a local conformational change in response to ionization of the internal residues.

摘要

蛋白质中可电离的氨基酸侧链通常位于表面。然而,在一些蛋白质中,一个可电离基团嵌入在非极性内部区域。这种埋藏的可电离基团会使蛋白质不稳定,并可能因pH值变化而引发构象变化。由于将带电基团从水转移到非极性介质的能量成本过高,必须引入其他稳定因素,如电离诱导的水渗透或结构变化。为了研究水渗透的作用,我们测量了葡萄球菌核酸酶V66E和V66K突变体的17O和2H磁弛豫色散(MRD),其中谷氨酸和赖氨酸残基主要埋藏在非极性环境中。在中性pH值下,这些残基不带电,我们没有发现突变位点附近有埋藏水分子的证据。这与之前V66E突变体的低温晶体结构形成对比,但与本文报道的室温晶体结构一致。在不同pH值下的MRD测量表明,Glu-66或Lys-66的电离不会伴随着长寿命水分子的渗透。另一方面,MRD数据与内部残基电离引起的局部构象变化一致

相似文献

1
Stabilization of internal charges in a protein: water penetration or conformational change?
Biophys J. 2004 Dec;87(6):3982-94. doi: 10.1529/biophysj.104.048454. Epub 2004 Sep 17.
2
Molecular dynamics study of water penetration in staphylococcal nuclease.
Proteins. 2005 Aug 15;60(3):433-49. doi: 10.1002/prot.20486.
3
Conformational relaxation and water penetration coupled to ionization of internal groups in proteins.
J Phys Chem A. 2011 Apr 28;115(16):4042-53. doi: 10.1021/jp110373f. Epub 2011 Mar 23.
5
6
Charges in Hydrophobic Environments: A Strategy for Identifying Alternative States in Proteins.
Biochemistry. 2017 Jan 10;56(1):212-218. doi: 10.1021/acs.biochem.6b00843. Epub 2016 Dec 23.
7
Structural origins of high apparent dielectric constants experienced by ionizable groups in the hydrophobic core of a protein.
J Mol Biol. 2011 Jan 14;405(2):361-77. doi: 10.1016/j.jmb.2010.10.001. Epub 2010 Nov 6.
8
Structural and thermodynamic consequences of burial of an artificial ion pair in the hydrophobic interior of a protein.
Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11685-90. doi: 10.1073/pnas.1402900111. Epub 2014 Jul 29.
10
Conformational Reorganization Coupled to the Ionization of Internal Lys Residues in Proteins.
Biochemistry. 2015 Sep 29;54(38):5888-97. doi: 10.1021/acs.biochem.5b00522. Epub 2015 Sep 16.

引用本文的文献

1
Selective Inhibitor Design against Thymidylate Synthase of Using Alchemical Simulations.
ACS Omega. 2025 Apr 4;10(14):13966-13976. doi: 10.1021/acsomega.4c10518. eCollection 2025 Apr 15.
2
Critical Beginnings: Selective Tuning of Solubility and Structural Accuracy of Newly Synthesized Proteins by the Hsp70 Chaperone System.
J Phys Chem B. 2023 May 11;127(18):3990-4014. doi: 10.1021/acs.jpcb.2c08485. Epub 2023 May 2.
3
Accurate p Calculations in Proteins with Reactive Molecular Dynamics Provide Physical Insight Into the Electrostatic Origins of Their Values.
J Phys Chem B. 2022 Sep 29;126(38):7321-7330. doi: 10.1021/acs.jpcb.2c04899. Epub 2022 Sep 15.
4
High-temperature behavior of hyperthermostable Thermotoga maritima xylanase XYN10B after designed and evolved mutations.
Appl Microbiol Biotechnol. 2022 Mar;106(5-6):2017-2027. doi: 10.1007/s00253-022-11823-3. Epub 2022 Feb 16.
5
Accurate and Transferable Reactive Molecular Dynamics Models from Constrained Density Functional Theory.
J Phys Chem B. 2021 Sep 23;125(37):10471-10480. doi: 10.1021/acs.jpcb.1c05992. Epub 2021 Sep 14.
6
-Canonical Monte Carlo Sampling for Modeling the Linkage between Charge Regulation and Conformational Equilibria of Peptides.
J Phys Chem B. 2019 Aug 15;123(32):6952-6967. doi: 10.1021/acs.jpcb.9b05206. Epub 2019 Aug 7.
7
Hydronium Ions Accompanying Buried Acidic Residues Lead to High Apparent Dielectric Constants in the Interior of Proteins.
J Phys Chem B. 2018 Jun 14;122(23):6215-6223. doi: 10.1021/acs.jpcb.8b04584. Epub 2018 Jun 1.
9
Continuous Constant pH Molecular Dynamics in Explicit Solvent with pH-Based Replica Exchange.
J Chem Theory Comput. 2011 Aug 9;7(8):2617-29. doi: 10.1021/ct200146j. Epub 2011 Jul 1.
10
Constant pH Molecular Dynamics in Explicit Solvent with Enveloping Distribution Sampling and Hamiltonian Exchange.
J Chem Theory Comput. 2014 Jul 8;10(7):2738-2750. doi: 10.1021/ct500175m. Epub 2014 Jun 3.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Symmetries of hydrogen bonds in solution.
Science. 1994 Dec 9;266(5191):1665-8. doi: 10.1126/science.266.5191.1665.
3
Protein hydration dynamics in solution: a critical survey.
Philos Trans R Soc Lond B Biol Sci. 2004 Aug 29;359(1448):1207-23; discussion 1223-4, 1323-8. doi: 10.1098/rstb.2004.1499.
5
Proton binding to proteins: pK(a) calculations with explicit and implicit solvent models.
J Am Chem Soc. 2004 Apr 7;126(13):4167-80. doi: 10.1021/ja039788m.
6
Biomolecular cryocrystallography: structural changes during flash-cooling.
Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):4793-8. doi: 10.1073/pnas.0308315101. Epub 2004 Mar 29.
7
Electrostatic basis for bioenergetics.
Methods Enzymol. 2004;380:52-84. doi: 10.1016/S0076-6879(04)80003-X.
8
Dynamics of protein and peptide hydration.
J Am Chem Soc. 2004 Jan 14;126(1):102-14. doi: 10.1021/ja038325d.
9
Heat transfer from protein crystals: implications for flash-cooling and X-ray beam heating.
Acta Crystallogr D Biol Crystallogr. 2003 Apr;59(Pt 4):697-708. doi: 10.1107/s0907444903002713. Epub 2003 Mar 25.
10
Refined structure of bovine carboxypeptidase A at 1.25 A resolution.
Acta Crystallogr D Biol Crystallogr. 2003 Feb;59(Pt 2):323-33. doi: 10.1107/s0907444902015706. Epub 2003 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验