Suppr超能文献

将人工离子对埋藏在蛋白质疏水内部的结构和热力学后果。

Structural and thermodynamic consequences of burial of an artificial ion pair in the hydrophobic interior of a protein.

机构信息

Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218; and.

Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218; andChemistry Department, United States Naval Academy, Annapolis, MD 21402.

出版信息

Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11685-90. doi: 10.1073/pnas.1402900111. Epub 2014 Jul 29.

Abstract

An artificial charge pair buried in the hydrophobic core of staphylococcal nuclease was engineered by making the V23E and L36K substitutions. Buried individually, Glu-23 and Lys-36 both titrate with pKa values near 7. When buried together their pKa values appear to be normal. The ionizable moieties of the buried Glu-Lys pair are 2.6 Å apart. The interaction between them at pH 7 is worth 5 kcal/mol. Despite this strong interaction, the buried Glu-Lys pair destabilizes the protein significantly because the apparent Coulomb interaction is sufficient to offset the dehydration of only one of the two buried charges. Save for minor reorganization of dipoles and water penetration consistent with the relatively high dielectric constant reported by the buried ion pair, there is no evidence that the presence of two charges in the hydrophobic interior of the protein induces any significant structural reorganization. The successful engineering of an artificial ion pair in a highly hydrophobic environment suggests that buried Glu-Lys pairs in dehydrated environments can be charged and that it is possible to engineer charge clusters that loosely resemble catalytic sites in a scaffold protein with high thermodynamic stability, without the need for specialized structural adaptations.

摘要

通过 V23E 和 L36K 取代,在葡萄球菌核酸酶的疏水性核心中构建了一个人工电荷对。单独埋藏时,Glu-23 和 Lys-36 的滴定 pKa 值均接近 7。当一起埋藏时,它们的 pKa 值似乎是正常的。埋藏的Glu-Lys 对的可离子化部分相距 2.6Å。在 pH 7 时它们之间的相互作用值为 5 kcal/mol。尽管存在这种强相互作用,但埋藏的Glu-Lys 对会显著使蛋白质不稳定,因为表观库仑相互作用足以抵消仅两个埋藏电荷之一的去水作用。除了与埋藏离子对报道的相对较高介电常数一致的偶极子和水渗透的微小重组外,没有证据表明蛋白质疏水性内部的两个电荷的存在会引起任何显著的结构重组。在高度疏水环境中成功构建人工离子对表明,在脱水环境中埋藏的 Glu-Lys 对可以带电,并且可以在具有高热力学稳定性的支架蛋白中构建松散类似于催化位点的电荷簇,而无需专门的结构适应。

相似文献

1
Structural and thermodynamic consequences of burial of an artificial ion pair in the hydrophobic interior of a protein.
Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11685-90. doi: 10.1073/pnas.1402900111. Epub 2014 Jul 29.
2
Charges in Hydrophobic Environments: A Strategy for Identifying Alternative States in Proteins.
Biochemistry. 2017 Jan 10;56(1):212-218. doi: 10.1021/acs.biochem.6b00843. Epub 2016 Dec 23.
3
4
Structural reorganization triggered by charging of Lys residues in the hydrophobic interior of a protein.
Structure. 2012 Jun 6;20(6):1071-85. doi: 10.1016/j.str.2012.03.023. Epub 2012 May 25.
5
Local Backbone Flexibility as a Determinant of the Apparent pK Values of Buried Ionizable Groups in Proteins.
Biochemistry. 2017 Oct 10;56(40):5338-5346. doi: 10.1021/acs.biochem.7b00678. Epub 2017 Sep 27.
8
Charges in the hydrophobic interior of proteins.
Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16096-100. doi: 10.1073/pnas.1004213107. Epub 2010 Aug 26.
9
Arginine residues at internal positions in a protein are always charged.
Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):18954-9. doi: 10.1073/pnas.1104808108. Epub 2011 Nov 11.
10
Dielectric Properties of a Protein Probed by Reversal of a Buried Ion Pair.
J Phys Chem B. 2018 Mar 8;122(9):2516-2524. doi: 10.1021/acs.jpcb.7b12121. Epub 2018 Feb 21.

引用本文的文献

1
Emergence of specific binding and catalysis from a designed generalist binding protein.
bioRxiv. 2025 Mar 19:2025.01.30.635804. doi: 10.1101/2025.01.30.635804.
2
3
Rheostats, toggles, and neutrals, Oh my! A new framework for understanding how amino acid changes modulate protein function.
J Biol Chem. 2024 Mar;300(3):105736. doi: 10.1016/j.jbc.2024.105736. Epub 2024 Feb 8.
4
Enhanced Sampling of Buried Charges in Free Energy Calculations Using Replica Exchange with Charge Tempering.
J Chem Theory Comput. 2024 Feb 13;20(3):1051-1061. doi: 10.1021/acs.jctc.3c00993. Epub 2024 Jan 17.
5
De Novo Design of a Highly Stable Ovoid TIM Barrel: Unlocking Pocket Shape towards Functional Design.
Biodes Res. 2022 Oct 10;2022:9842315. doi: 10.34133/2022/9842315. eCollection 2022.
6
The relative stability of trpzip1 and its mutants determined by computation and experiment.
RSC Adv. 2020 Feb 12;10(11):6520-6535. doi: 10.1039/d0ra00920b. eCollection 2020 Feb 7.
7
Electronic Polarization Is Essential for the Stabilization and Dynamics of Buried Ion Pairs in Staphylococcal Nuclease Mutants.
J Am Chem Soc. 2022 Mar 16;144(10):4594-4610. doi: 10.1021/jacs.2c00312. Epub 2022 Mar 3.
9
Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE.
Proc Natl Acad Sci U S A. 2021 May 18;118(20). doi: 10.1073/pnas.2024583118.
10
Design of buried charged networks in artificial proteins.
Nat Commun. 2021 Mar 25;12(1):1895. doi: 10.1038/s41467-021-21909-7.

本文引用的文献

1
Uncovering the determinants of a highly perturbed tyrosine pKa in the active site of ketosteroid isomerase.
Biochemistry. 2013 Nov 5;52(44):7840-55. doi: 10.1021/bi401083b. Epub 2013 Oct 23.
2
Engineering a model protein cavity to catalyze the Kemp elimination.
Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16179-83. doi: 10.1073/pnas.1208076109. Epub 2012 Sep 17.
3
Structural reorganization triggered by charging of Lys residues in the hydrophobic interior of a protein.
Structure. 2012 Jun 6;20(6):1071-85. doi: 10.1016/j.str.2012.03.023. Epub 2012 May 25.
4
Arginine residues at internal positions in a protein are always charged.
Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):18954-9. doi: 10.1073/pnas.1104808108. Epub 2011 Nov 11.
5
Thermodynamic principles for the engineering of pH-driven conformational switches and acid insensitive proteins.
Biophys Chem. 2011 Nov;159(1):217-26. doi: 10.1016/j.bpc.2011.06.016. Epub 2011 Jul 7.
6
Structural-functional role of chloride in photosystem II.
Biochemistry. 2011 Jul 26;50(29):6312-5. doi: 10.1021/bi200685w. Epub 2011 Jun 27.
7
Large shifts in pKa values of lysine residues buried inside a protein.
Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5260-5. doi: 10.1073/pnas.1010750108. Epub 2011 Mar 9.
8
Theoretical studies of salt-bridge formation by amino acid side chains in low and medium polarity environments.
J Phys Chem B. 2010 Dec 16;114(49):16436-42. doi: 10.1021/jp103313s. Epub 2010 Nov 19.
9
Structural origins of high apparent dielectric constants experienced by ionizable groups in the hydrophobic core of a protein.
J Mol Biol. 2011 Jan 14;405(2):361-77. doi: 10.1016/j.jmb.2010.10.001. Epub 2010 Nov 6.
10
Charges in the hydrophobic interior of proteins.
Proc Natl Acad Sci U S A. 2010 Sep 14;107(37):16096-100. doi: 10.1073/pnas.1004213107. Epub 2010 Aug 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验