Alaton I Arslan, Dogruel S, Baykal E, Gerone G
Department of Environmental Engineering, Faculty of Civil Engineering, Istanbul Technical University, Room Nr. K320, 34469 Maslak, Istanbul, Turkey.
J Environ Manage. 2004 Nov;73(2):155-63. doi: 10.1016/j.jenvman.2004.06.007.
Antibiotic formulation effluent is well known for its important contribution to environmental pollution due to its fluctuating and recalcitrant nature. In the present study, the chemical treatability of penicillin formulation effluent (average filtered COD(o)=830 mg/l; average soluble COD(o)=615 mg/l; pH(o)=6.9) bearing the active substances penicillin Amoxicillin Trihydrate (C(16)H(19)N(3)O(5)S.3H(2)O) and the beta-lactamase inhibitor Potassium Clavulanate (C(8)H(8)KNO(5)) has been investigated. For this purpose, the penicillin formulation effluent was subjected to ozonation (applied ozone dose=2500 mg/(lxh)) at varying pH (2.5-12.0) and O(3)+H(2)O(2) (perozonation) at different initial H(2)O(2) concentrations (=2-40 mM) and pH 10.5. According to the experimental results, the overall Chemical Oxygen Demand (COD) removal efficiency varied between 10 and 56% for ozonation and 30% (no H(2)O(2)) and 83% (20 mM H(2)O(2)) for the O(3)+H(2)O(2) process. The addition of H(2)O(2) improved the COD removal rates considerably even at the lowest studied H(2)O(2) concentration. An optimum H(2)O(2) concentration of 20 mM existed at which the highest COD removal efficiency and abatement kinetics were obtained. The ozone absorption rate ranged between 53% (ozonation) and 68% (perozonation). An ozone input of 800 mg/l in 20 min was sufficient to achieve the highest BOD(5)/COD (biodegradability) ratio (=0.45) and BOD(5) value (109 mg/l) for the pre-treated penicillin formulation effluent. After the establishment of optimum ozonation and perozonation conditions, mixtures of synthetic domestic wastewater+raw, ozonated and perozonated penicillin formulation effluent were subjected to biological activated sludge treatment at a food-to-microorganisms (F/M) ratio of 0.23 mg COD/(mg MLSSxd), using a consortium of acclimated microorganisms. COD removal efficiencies of the activated sludge process were 71, 81 and 72% for pharmaceutical wastewater containing synthetic domestic wastewater mixed with either raw, ozonated or perozonated formulation effluent, respectively. The ultimate COD value obtained after 24-h biotreatment of the synthetic domestic wastewater+pre-ozonated formulation effluent mixture was around 100 mg/l instead of 180 mg/l which was the final COD obtained for the wastewater mixture containing raw formulation effluent, indicating that pre-ozonation at least partially removed the non-biodegradable COD fraction of the formulation effluent.
抗生素制剂废水因其性质波动且难降解,对环境污染的重要影响而广为人知。在本研究中,对含有活性物质阿莫西林三水合物(C(16)H(19)N(3)O(5)S·3H(2)O)和β-内酰胺酶抑制剂克拉维酸钾(C(8)H(8)KNO(5))的青霉素制剂废水(平均过滤化学需氧量(COD(o))=830 mg/l;平均可溶性化学需氧量(COD(o))=615 mg/l;pH(o)=6.9)的化学可处理性进行了研究。为此,在不同pH值(2.5 - 12.0)下对青霉素制剂废水进行臭氧氧化(施加臭氧剂量=2500 mg/(lxh)),并在不同初始过氧化氢浓度(=2 - 40 mM)和pH值10.5条件下进行O(3)+H(2)O(2)(过氧化)处理。根据实验结果,臭氧氧化的总化学需氧量(COD)去除效率在10%至56%之间,而O(3)+H(2)O(2)工艺的去除效率为30%(无过氧化氢)和83%(20 mM过氧化氢)。即使在研究的最低过氧化氢浓度下,添加过氧化氢也显著提高了COD去除率。存在一个20 mM的最佳过氧化氢浓度,在此浓度下可获得最高的COD去除效率和降解动力学。臭氧吸收率在53%(臭氧氧化)至68%(过氧化)之间。在20分钟内输入800 mg/l的臭氧足以使预处理后的青霉素制剂废水达到最高的五日生化需氧量(BOD(5))/化学需氧量(COD)(生物降解性)比值(=0.45)和BOD(5)值(109 mg/l)。在确定最佳臭氧氧化和过氧化条件后,将合成生活污水与原青霉素制剂废水、臭氧氧化后的废水和过氧化后的废水的混合物,以食物与微生物(F/M)比为0.23 mg COD/(mg MLSSxd)进行生物活性污泥处理,使用驯化微生物菌群。对于分别含有与原废水、臭氧氧化废水或过氧化废水混合的合成生活污水的制药废水,活性污泥法的COD去除效率分别为71%、81%和72%。合成生活污水与预臭氧氧化制剂废水混合物经过24小时生物处理后获得的最终COD值约为100 mg/l,而含有原制剂废水的废水混合物最终COD值为180 mg/l,这表明预臭氧氧化至少部分去除了制剂废水中不可生物降解的COD部分。