Suppr超能文献

利用局部序列-结构相关性进行远程同源物检测。

Remote homolog detection using local sequence-structure correlations.

作者信息

Hou Yuna, Hsu Wynne, Lee Mong Li, Bystroff Christopher

机构信息

School of Computing, National University of Singapore, Singapore.

出版信息

Proteins. 2004 Nov 15;57(3):518-30. doi: 10.1002/prot.20221.

Abstract

Remote homology detection refers to the detection of structural homology in proteins when there is little or no sequence similarity. In this article, we present a remote homolog detection method called SVM-HMMSTR that overcomes the reliance on detectable sequence similarity by transforming the sequences into strings of hidden Markov states that represent local folding motif patterns. These state strings are transformed into fixed-dimension feature vectors for input to a support vector machine. Two sets of features are defined: an order-independent feature set that captures the amino acid and local structure composition; and an order-dependent feature set that captures the sequential ordering of the local structures. Tests using the Structural Classification of Proteins (SCOP) 1.53 data set show that the SVM-HMMSTR gives a significant improvement over several current methods.

摘要

远程同源性检测是指在蛋白质序列相似度很低或几乎没有序列相似度时,对其结构同源性进行检测。在本文中,我们提出了一种名为SVM-HMMSTR的远程同源物检测方法,该方法通过将序列转化为代表局部折叠基序模式的隐马尔可夫状态串,克服了对可检测序列相似度的依赖。这些状态串被转化为固定维度的特征向量,作为支持向量机的输入。定义了两组特征:一组与顺序无关的特征集,用于捕获氨基酸和局部结构组成;另一组与顺序有关的特征集,用于捕获局部结构的顺序排列。使用蛋白质结构分类(SCOP)1.53数据集进行的测试表明,SVM-HMMSTR方法相对于目前的几种方法有显著改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验