Ruysschaert Tristan, Germain Matthieu, Gomes Joana Filipa Pereira da Silva, Fournier Didier, Sukhorukov Gleb B, Meier Wolfgang, Winterhalter Mathias
Institut Pharmacologie et Biologie Structurale-CNRS UMR5089, Toulouse F-31077, France.
IEEE Trans Nanobioscience. 2004 Mar;3(1):49-55. doi: 10.1109/tnb.2004.824273.
Here we present three different types of mechanically stable nanometer-sized hollow capsules. The common point of the currently developed systems in our laboratory is that they are liposome based. Biomolecules can be used to functionalize lipid vesicles to create a new type of intelligent material. For example, insertion of membrane channels into the capsule wall can modify the permeability. Covalent binding of antibodies allows targeting of the capsule to specific sites. Liposomes loaded with enzymes may provide an optimal environment for them with respect to the maximal turnover and may stabilize the enzyme. However, the main drawback of liposomes is their instability in biological media as well as their sensitivity to many external parameters such as temperature or osmotic pressure. To increase their stability we follow different strategies: 1) polymerize a two-dimensional network in the hydrophobic core of the membrane; 2) coat the liposome with a polyelectrolyte shell; or 3) add surface active polymers to form mixed vesicular structures.
在此,我们展示了三种不同类型的机械稳定纳米级空心胶囊。我们实验室目前开发的系统的共同点是它们基于脂质体。生物分子可用于使脂质囊泡功能化,以创造一种新型智能材料。例如,将膜通道插入胶囊壁可改变其渗透性。抗体的共价结合可使胶囊靶向特定部位。装载酶的脂质体可为酶提供关于最大周转率的最佳环境,并可使酶稳定。然而,脂质体的主要缺点是它们在生物介质中的不稳定性以及对许多外部参数(如温度或渗透压)的敏感性。为提高其稳定性,我们采用不同策略:1)在膜的疏水核心中聚合二维网络;2)用聚电解质壳包裹脂质体;或3)添加表面活性聚合物以形成混合囊泡结构。