Hovorka Roman, Canonico Valentina, Chassin Ludovic J, Haueter Ulrich, Massi-Benedetti Massimo, Orsini Federici Marco, Pieber Thomas R, Schaller Helga C, Schaupp Lukas, Vering Thomas, Wilinska Malgorzata E
Diabetes Modelling Group, Department of Paediatrics, University of Cambridge, Box 116, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK.
Physiol Meas. 2004 Aug;25(4):905-20. doi: 10.1088/0967-3334/25/4/010.
A nonlinear model predictive controller has been developed to maintain normoglycemia in subjects with type 1 diabetes during fasting conditions such as during overnight fast. The controller employs a compartment model, which represents the glucoregulatory system and includes submodels representing absorption of subcutaneously administered short-acting insulin Lispro and gut absorption. The controller uses Bayesian parameter estimation to determine time-varying model parameters. Moving target trajectory facilitates slow, controlled normalization of elevated glucose levels and faster normalization of low glucose values. The predictive capabilities of the model have been evaluated using data from 15 clinical experiments in subjects with type 1 diabetes. The experiments employed intravenous glucose sampling (every 15 min) and subcutaneous infusion of insulin Lispro by insulin pump (modified also every 15 min). The model gave glucose predictions with a mean square error proportionally related to the prediction horizon with the value of 0.2 mmol L(-1) per 15 min. The assessment of clinical utility of model-based glucose predictions using Clarke error grid analysis gave 95% of values in zone A and the remaining 5% of values in zone B for glucose predictions up to 60 min (n = 1674). In conclusion, adaptive nonlinear model predictive control is promising for the control of glucose concentration during fasting conditions in subjects with type 1 diabetes.
一种非线性模型预测控制器已被开发出来,用于在1型糖尿病患者处于空腹状态(如夜间禁食)时维持血糖正常。该控制器采用了一个房室模型,该模型代表了葡萄糖调节系统,包括代表皮下注射速效胰岛素赖脯胰岛素吸收和肠道吸收的子模型。该控制器使用贝叶斯参数估计来确定随时间变化的模型参数。移动目标轨迹有助于缓慢、可控地使升高的血糖水平正常化,并更快地使低血糖值正常化。已使用来自15项1型糖尿病患者临床实验的数据对该模型的预测能力进行了评估。这些实验采用静脉葡萄糖采样(每15分钟一次)和通过胰岛素泵皮下输注赖脯胰岛素(也每15分钟调整一次)。该模型给出的葡萄糖预测的均方误差与预测范围成比例相关,每15分钟为0.2 mmol L(-1)。使用克拉克误差网格分析对基于模型的葡萄糖预测的临床效用进行评估,对于长达60分钟的葡萄糖预测,95%的值在A区,其余5%的值在B区(n = 1674)。总之,自适应非线性模型预测控制在控制1型糖尿病患者空腹状态下的血糖浓度方面很有前景。