Suppr超能文献

深度多输出预测:学习准确预测血糖轨迹

Deep Multi-Output Forecasting: Learning to Accurately Predict Blood Glucose Trajectories.

作者信息

Fox Ian, Ang Lynn, Jaiswal Mamta, Pop-Busui Rodica, Wiens Jenna

机构信息

CSE, University of Michigan.

Internal Medicine, University of Michigan.

出版信息

KDD. 2018 Aug;2018:1387-1395. doi: 10.1145/3219819.3220102. Epub 2018 Jul 19.

Abstract

In many forecasting applications, it is valuable to predict not only the value of a signal at a certain time point in the future, but also the values leading up to that point. This is especially true in clinical applications, where the future state of the patient can be less important than the patient's overall trajectory. This requires multi-step forecasting, a forecasting variant where one aims to predict multiple values in the future simultaneously. Standard methods to accomplish this can propagate error from prediction to prediction, reducing quality over the long term. In light of these challenges, we propose multi-output deep architectures for multi-step forecasting in which we explicitly model the distribution of future values of the signal over a prediction horizon. We apply these techniques to the challenging and clinically relevant task of blood glucose forecasting. Through a series of experiments on a real-world dataset consisting of 550K blood glucose measurements, we demonstrate the effectiveness of our proposed approaches in capturing the underlying signal dynamics. Compared to existing shallow and deep methods, we find that our proposed approaches improve performance individually and capture complementary information, leading to a large improvement over the baseline when combined (4.87 5.31 absolute percentage error (APE)). Overall, the results suggest the efficacy of our proposed approach in predicting blood glucose level and multi-step forecasting more generally.

摘要

在许多预测应用中,不仅预测信号在未来某个时间点的值很有价值,而且预测直至该时间点之前的值也很有价值。在临床应用中尤其如此,在临床应用中,患者的未来状态可能不如患者的整体病程重要。这就需要多步预测,这是一种预测变体,旨在同时预测未来的多个值。完成此任务的标准方法可能会将误差从一个预测传播到另一个预测,从长远来看会降低质量。鉴于这些挑战,我们提出了用于多步预测的多输出深度架构,其中我们明确地对信号在预测范围内的未来值分布进行建模。我们将这些技术应用于具有挑战性且与临床相关的血糖预测任务。通过在一个由55万个血糖测量值组成的真实世界数据集上进行的一系列实验,我们证明了我们提出的方法在捕捉潜在信号动态方面的有效性。与现有的浅层和深层方法相比,我们发现我们提出的方法各自提高了性能并捕捉了互补信息,组合起来时相对于基线有了很大的改进(绝对百分比误差为4.87至5.31)。总体而言,结果表明我们提出的方法在预测血糖水平以及更一般的多步预测方面的有效性。

相似文献

10
Systemic treatments for metastatic cutaneous melanoma.转移性皮肤黑色素瘤的全身治疗
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.

本文引用的文献

1
Using LSTMs to learn physiological models of blood glucose behavior.使用长短期记忆网络来学习血糖行为的生理模型。
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:2887-2891. doi: 10.1109/EMBC.2017.8037460.
2
7
The UVA/PADOVA Type 1 Diabetes Simulator: New Features.UVA/帕多瓦1型糖尿病模拟器:新特性
J Diabetes Sci Technol. 2014 Jan;8(1):26-34. doi: 10.1177/1932296813514502. Epub 2014 Jan 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验