Suppr超能文献

糖尿病大鼠肾髓质中一氧化氮合酶活性的翻译后调控

Posttranslational regulation of NO synthase activity in the renal medulla of diabetic rats.

作者信息

Lee Dexter L, Sasser Jennifer M, Hobbs Janet L, Boriskie Amy, Pollock David M, Carmines Pamela K, Pollock Jennifer S

机构信息

Vascular Biology Center, Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912-2500, USA.

出版信息

Am J Physiol Renal Physiol. 2005 Jan;288(1):F82-90. doi: 10.1152/ajprenal.00127.2004. Epub 2004 Sep 21.

Abstract

Shear stress increases nitric oxide (NO) production by endothelial cells, inner medullary collecting duct cells, and thick ascending limb. We postulated that the osmotic diuresis accompanying type 1 diabetes is associated with increased NO synthase (NOS) activity and/or expression in the renal medulla. Diabetes was induced by injection of streptozotocin, with insulin provided to maintain moderate hyperglycemia (Hyp) or euglycemia (Eug) for 3 wk. Sham rats received vehicle treatments. A separate group of rats (Phz) received phlorizin to produce a glucose-dependent osmotic diuresis. Renal medullary NOS1 and NOS2 activities did not differ between groups, whereas NOS3 activity was significantly increased in Hyp. Neither NOS1 nor NOS3 protein levels differed significantly between groups. Reduced phosphorylation of NOS3 at Thr(495) and Ser(633) was evident in medullary homogenates from Hyp rats, with no difference apparent at Ser(1177). Immunohistochemical analysis indicated prominent expression of pThr(495)NOS3 in the thick ascending limb and collecting duct of Sham and Phz rats. Hyp rats displayed staining in the collecting duct but minimal thick ascending limb staining. Immunostaining with anti-pSer(1177)NOS3 was evident only in the thick ascending limb, with no apparent differences between groups. In summary, glucose-dependent osmotic diuresis alone did not alter NOS activity or expression in the renal medulla. Diabetic hyperglycemia increased medullary NOS3 activity without a concomitant increase in NOS3 protein levels; however, NOS3 phosphorylation was reduced at Thr(495) and Ser(633). Thus changes in the phosphorylation of NOS at known regulatory sites might represent the primary mechanism underlying increased renal medullary NOS activity in diabetic hyperglycemia.

摘要

剪切应力可增加内皮细胞、髓质内集合管细胞和髓袢升支粗段中一氧化氮(NO)的生成。我们推测,1型糖尿病伴随的渗透性利尿与肾髓质中一氧化氮合酶(NOS)活性和/或表达增加有关。通过注射链脲佐菌素诱导糖尿病,给予胰岛素以维持中度高血糖(Hyp)或血糖正常(Eug)3周。假手术大鼠接受溶剂处理。另一组大鼠(Phz)接受根皮苷以产生葡萄糖依赖性渗透性利尿。各组之间肾髓质NOS1和NOS2活性无差异,而Hyp组中NOS3活性显著增加。各组之间NOS1和NOS3蛋白水平均无显著差异。Hyp大鼠髓质匀浆中NOS3在苏氨酸(Thr)495和丝氨酸(Ser)633位点的磷酸化水平降低,而在丝氨酸1177位点无明显差异。免疫组织化学分析表明,假手术组和Phz组大鼠的髓袢升支粗段和集合管中有显著的pThr495NOS3表达。Hyp组大鼠在集合管中有染色,但髓袢升支粗段染色极少。抗pSer1177NOS3免疫染色仅在髓袢升支粗段可见,各组之间无明显差异。总之,单纯葡萄糖依赖性渗透性利尿不会改变肾髓质中NOS的活性或表达。糖尿病高血糖增加了髓质NOS3活性,但NOS3蛋白水平并未随之增加;然而,NOS3在Thr495和Ser633位点的磷酸化水平降低。因此,已知调节位点处NOS磷酸化的变化可能是糖尿病高血糖时肾髓质NOS活性增加的主要机制。

相似文献

1
Posttranslational regulation of NO synthase activity in the renal medulla of diabetic rats.
Am J Physiol Renal Physiol. 2005 Jan;288(1):F82-90. doi: 10.1152/ajprenal.00127.2004. Epub 2004 Sep 21.
2
PP2B-dependent NO production in the medullary thick ascending limb during diabetes.
Am J Physiol Renal Physiol. 2009 Aug;297(2):F471-80. doi: 10.1152/ajprenal.90760.2008. Epub 2009 May 20.
3
Influence of salt on subcellular localization of nitric oxide synthase activity and expression in the renal inner medulla.
Clin Exp Pharmacol Physiol. 2008 Feb;35(2):120-5. doi: 10.1111/j.1440-1681.2007.04802.x. Epub 2007 Sep 24.
5
Renal NOS activity, expression, and localization in male and female spontaneously hypertensive rats.
Am J Physiol Regul Integr Comp Physiol. 2010 Jan;298(1):R61-9. doi: 10.1152/ajpregu.00526.2009. Epub 2009 Nov 4.
6
Endothelin(A) (ET(A)) and ET(B) receptor-mediated regulation of nitric oxide synthase 1 (NOS1) and NOS3 isoforms in the renal inner medulla.
Acta Physiol (Oxf). 2007 Dec;191(4):329-36. doi: 10.1111/j.1748-1716.2007.01754.x. Epub 2007 Sep 24.
7
Increased nitric oxide synthase mRNA expression in the renal medulla of water-deprived rats.
Kidney Int. 1999 Dec;56(6):2191-202. doi: 10.1046/j.1523-1755.1999.00795.x.
9
Increased activity and expression of Ca(2+)-dependent NOS in renal cortex of ANG II-infused hypertensive rats.
Am J Physiol. 1999 Nov;277(5):F797-804. doi: 10.1152/ajprenal.1999.277.5.F797.
10
Collecting duct-derived endothelin regulates arterial pressure and Na excretion via nitric oxide.
Hypertension. 2008 Jun;51(6):1605-10. doi: 10.1161/HYPERTENSIONAHA.107.108126. Epub 2008 Apr 7.

引用本文的文献

1
Urinary PART1 and PLA2R1 Could Potentially Serve as Diagnostic Markers for Diabetic Kidney Disease Patients.
Diabetes Metab Syndr Obes. 2023 Dec 27;16:4215-4231. doi: 10.2147/DMSO.S445341. eCollection 2023.
2
Sensing of tubular flow and renal electrolyte transport.
Nat Rev Nephrol. 2020 Jun;16(6):337-351. doi: 10.1038/s41581-020-0259-8. Epub 2020 Mar 3.
3
Diabetic bladder dysfunction is associated with bladder inflammation triggered through hyperglycemia, not polyuria.
Res Rep Urol. 2018 Nov 16;10:219-225. doi: 10.2147/RRU.S177633. eCollection 2018.
5
Renal response to L-arginine in diabetic rats. A possible link between nitric oxide system and aquaporin-2.
PLoS One. 2014 Aug 11;9(8):e104923. doi: 10.1371/journal.pone.0104923. eCollection 2014.
6
Mitochondrial dysfunction in brain cortex mitochondria of STZ-diabetic rats: effect of l-Arginine.
Neurochem Res. 2013 Dec;38(12):2570-80. doi: 10.1007/s11064-013-1172-3. Epub 2013 Nov 5.
9
The role of nitric oxide in the dysregulation of the urine concentration mechanism in diabetes mellitus.
Front Physiol. 2012 Jun 6;3:176. doi: 10.3389/fphys.2012.00176. eCollection 2012.
10
Protein kinase C-dependent NAD(P)H oxidase activation induced by type 1 diabetes in renal medullary thick ascending limb.
Hypertension. 2010 Feb;55(2):468-73. doi: 10.1161/HYPERTENSIONAHA.109.145714. Epub 2009 Dec 28.

本文引用的文献

1
Luminal flow induces eNOS activation and translocation in the rat thick ascending limb.
Am J Physiol Renal Physiol. 2004 Aug;287(2):F274-80. doi: 10.1152/ajprenal.00382.2003. Epub 2004 Apr 6.
2
Kidney function in early diabetes: the tubular hypothesis of glomerular filtration.
Am J Physiol Renal Physiol. 2004 Jan;286(1):F8-15. doi: 10.1152/ajprenal.00208.2003.
3
NOS 3 subcellular localization in the regulation of nitric oxide production.
Acta Physiol Scand. 2003 Oct;179(2):115-22. doi: 10.1046/j.1365-201X.2003.01181.x.
5
Increased renal ENaC subunit and sodium transporter abundances in streptozotocin-induced type 1 diabetes.
Am J Physiol Renal Physiol. 2003 Dec;285(6):F1125-37. doi: 10.1152/ajprenal.00143.2003. Epub 2003 Aug 5.
6
Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases.
Am J Physiol Cell Physiol. 2003 Sep;285(3):C499-508. doi: 10.1152/ajpcell.00122.2003.
7
Role of renal NO production in the regulation of medullary blood flow.
Am J Physiol Regul Integr Comp Physiol. 2003 Jun;284(6):R1355-69. doi: 10.1152/ajpregu.00701.2002.
8
Paradoxes of nitric oxide in the diabetic kidney.
Am J Physiol Renal Physiol. 2003 Jun;284(6):F1121-37. doi: 10.1152/ajprenal.00265.2002.
9
Changes in renal medullary transport proteins during uncontrolled diabetes mellitus in rats.
Am J Physiol Renal Physiol. 2003 Aug;285(2):F303-9. doi: 10.1152/ajprenal.00438.2002. Epub 2003 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验