Suppr超能文献

Cox回归模型中个体协变量聚集导致的偏倚。

Bias due to aggregation of individual covariates in the Cox regression model.

作者信息

Abrahamowicz Michal, Du Berger Roxane, Krewski Daniel, Burnett Richard, Bartlett Gillian, Tamblyn Robyn M, Leffondré Karen

机构信息

Department of Epidemiology and Biostatistics, McGill University, Montreal, Quebec, Canada.

出版信息

Am J Epidemiol. 2004 Oct 1;160(7):696-706. doi: 10.1093/aje/kwh266.

Abstract

The impact of covariate aggregation, well studied in relation to linear regression, is less clear in the Cox model. In this paper, the authors use real-life epidemiologic data to illustrate how aggregating individual covariate values may lead to important underestimation of the exposure effect. The issue is then systematically assessed through simulations, with six alternative covariate representations. It is shown that aggregation of important predictors results in a systematic bias toward the null in the Cox model estimate of the exposure effect, even if exposure and predictors are not correlated. The underestimation bias increases with increasing strength of the covariate effect and decreasing censoring and, for a strong predictor and moderate censoring, may exceed 20%, with less than 80% coverage of the 95% confidence interval. However, covariate aggregation always induces smaller bias than covariate omission does, even if the two phenomena are shown to be related. The impact of covariate aggregation, but not omission, is independent of the covariate-exposure correlation. Simulations involving time-dependent aggregates demonstrate that bias results from failure of the baseline covariate mean to account for nonrandom changes over time in the risk sets and suggest a simple approach that may reduce the bias if individual data are available but have to be aggregated.

摘要

协变量聚合的影响在与线性回归相关的研究中已得到充分探讨,但在Cox模型中尚不清楚。在本文中,作者使用实际流行病学数据来说明聚合个体协变量值如何可能导致对暴露效应的重要低估。然后通过模拟,采用六种替代协变量表示法对该问题进行系统评估。结果表明,即使暴露与预测因子不相关,重要预测因子的聚合也会导致Cox模型对暴露效应的估计出现系统性的向无效值的偏差。随着协变量效应强度的增加和删失的减少,低估偏差会增大,对于一个强预测因子和中等删失情况,偏差可能超过20%,95%置信区间的覆盖范围不到80%。然而,协变量聚合总是比协变量遗漏引起的偏差小,即使这两种现象被证明是相关的。协变量聚合而非遗漏的影响与协变量 - 暴露相关性无关。涉及随时间变化的聚合的模拟表明,偏差源于基线协变量均值未能考虑风险集中随时间的非随机变化,并提出了一种简单的方法,如果可以获得个体数据但必须进行聚合,该方法可能会减少偏差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验