Suppr超能文献

足迹区域采样纹理映射。

Footprint area sampled texturing.

作者信息

Chen Baoquan, Dachille Frank, Kaufman Arie E

机构信息

Department of Computer Science and Engineering, University of Minnesota at Twin Cities, SE, Minneapolis, MN 55455, USA.

出版信息

IEEE Trans Vis Comput Graph. 2004 Mar-Apr;10(2):230-40. doi: 10.1109/TVCG.2004.1260775.

Abstract

We study texture projection based on a four region subdivision: magnification, minification, and two mixed regions. We propose improved versions of existing techniques by providing exact filtering methods which reduce both aliasing and overblurring, especially in the mixed regions. We further present a novel texture mapping algorithm called FAST (Footprint Area Sampled Texturing), which not only delivers high quality, but also is efficient. By utilizing coherence between neighboring pixels, performing prefiltering, and applying an area sampling scheme, we guarantee a minimum number of samples sufficient for effective antialiasing. Unlike existing methods (e.g., MIP-map, Feline), our method adapts the sampling rate in each chosen MIP-map level separately to avoid undersampling in the lower level l for effective antialiasing and to avoid oversampling in the higher level l + 1 for efficiency. Our method has been shown to deliver superior image quality to Feline and other methods while retaining the same efficiency. We also provide implementation trade offs to apply a variable degree of accuracy versus speed.

摘要

我们基于四个区域细分来研究纹理投影

放大、缩小以及两个混合区域。我们通过提供精确的滤波方法改进了现有技术,这些方法减少了混叠和过度模糊,特别是在混合区域。我们进一步提出了一种名为FAST(足迹区域采样纹理映射)的新颖纹理映射算法,它不仅能提供高质量,而且效率很高。通过利用相邻像素间的相关性、执行预滤波以及应用区域采样方案,我们确保了有效抗混叠所需的最少样本数量。与现有方法(例如MIP映射、Feline)不同,我们的方法在每个选定的MIP映射级别分别调整采样率,以避免在较低级别l出现欠采样以实现有效的抗混叠,并避免在较高级别l + 1出现过采样以提高效率。我们的方法已被证明在保持相同效率的同时,能提供比Feline和其他方法更优的图像质量。我们还提供了在应用可变精度与速度之间的实现权衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验