Johnston Jason W, Myers Lisa E, Ochs Martina M, Benjamin William H, Briles David E, Hollingshead Susan K
Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
Infect Immun. 2004 Oct;72(10):5858-67. doi: 10.1128/IAI.72.10.5858-5867.2004.
PsaA of Streptococcus pneumoniae, originally believed to be an adhesin, is the lipoprotein component of an Mn2+ transporter. Mutations in psaA cause deficiencies in growth, virulence, adherence, and the oxidative stress response. Immunofluorescence microscopy shows that PsaA is hidden beneath the cell wall and the polysaccharide capsule and only exposed to antibodies upon cell wall removal. A psaBC deletion mutant, expressing PsaA normally, was as deficient in adherence to Detroit 562 cells as were strains lacking PsaA. Thus, PsaA does not appear to act directly as an adhesin, but rather, psaA mutations indirectly affect this process through the disruption of Mn2+ transport. The deficiency in Mn2+ transport also causes hypersensitivity to oxidative stress from H2O2 and superoxide. In a chemically defined medium, growth of the wild-type strain was possible in the absence of Fe2+ and Mn2+ cations after a lag of about 15 h. Addition of Mn2+ alone or together with Fe2+ allowed prompt and rapid growth. In the absence of Mn2+, the addition of Fe2+ alone extended the 15-h lag phase to 25 h. Thus, while Fe2+ adversely affects the transition from lag phase to log phase, perhaps through increasing oxidative stress, this effect is relieved by the presence of Mn2+. A scavenger specific for superoxides but not those specific for hydroxyl radicals or H2O2 was able to eliminate the inhibition of growth caused by iron supplementation in the absence of Mn2+. This implies that superoxides are a key player in oxidative stress generated in the presence of iron.
肺炎链球菌的PsaA最初被认为是一种黏附素,实际上是Mn2+转运蛋白的脂蛋白成分。psaA基因的突变会导致生长、毒力、黏附及氧化应激反应方面的缺陷。免疫荧光显微镜检查显示,PsaA隐藏在细胞壁和多糖荚膜之下,只有在去除细胞壁后才会暴露于抗体。一个正常表达PsaA的psaBC缺失突变体,在黏附底特律562细胞方面与缺乏PsaA的菌株一样存在缺陷。因此,PsaA似乎并不直接作为黏附素起作用,而是psaA突变通过破坏Mn2+转运间接影响这一过程。Mn2+转运缺陷还会导致对H2O2和超氧化物产生的氧化应激高度敏感。在化学限定培养基中,野生型菌株在大约15小时的延迟后,在没有Fe2+和Mn2+阳离子的情况下也能够生长。单独添加Mn2+或与Fe2+一起添加可使菌株迅速快速生长。在没有Mn2+的情况下,单独添加Fe2+可将15小时的延迟期延长至25小时。因此,虽然Fe2+可能通过增加氧化应激对从延迟期到对数期的转变产生不利影响,但Mn2+的存在可缓解这种影响。一种特异性针对超氧化物而非羟基自由基或H2O2的清除剂能够消除在没有Mn2+的情况下铁补充对生长造成的抑制。这意味着超氧化物是铁存在时产生的氧化应激中的关键因素。