Fanara Patrizia, Turner Scott, Busch Robert, Killion Salena, Awada Mohamad, Turner Holly, Mahsut Ablatt, Laprade Kristen L, Stark Julie M, Hellerstein Marc K
KineMed, Inc., Emeryville, California 94608, USA.
J Biol Chem. 2004 Nov 26;279(48):49940-7. doi: 10.1074/jbc.M409660200. Epub 2004 Sep 21.
Microtubules are dynamic polymers with central roles in the mitotic checkpoint, mitotic spindle assembly, and chromosome segregation. Agents that block mitotic progression and cell proliferation by interfering with microtubule dynamics (microtubule-targeted tubulin-polymerizing agents (MTPAs)) are powerful antitumor agents. Effects of MTPAs (e.g. paclitaxel) on microtubule dynamics have not yet been directly demonstrated in intact animals, however. Here we describe a method that measures microtubule dynamics as an exchange of tubulin dimers into microtubules in vivo. The incorporation of deuterium ((2)H(2)) from heavy water ((2)H(2)O) into tubulin dimers and polymers is measured by gas chromatography/mass spectrometry. In cultured human lung and breast cancer cell lines, or in tumors implanted into nude mice, tubulin dimers and polymerized microtubules exhibited nearly identical label incorporation rates, reflecting their rapid exchange. Administration of paclitaxel during 24 h of (2)H(2)O labeling in vivo reduced (2)H labeling in polymers while increasing (2)H in dimers, indicating diminished flux of dimers into polymers (i.e. inhibition of microtubule dynamic equilibrium). In vivo inhibition of microtubule dynamics was dose-dependent and correlated with inhibition of DNA replication, a stable isotopic measure of tumor cell growth. In contrast, microtubule polymers from sciatic nerve of untreated mice were not in dynamic equilibrium with tubulin dimers, and paclitaxel increased label incorporation into polymers. Our results directly demonstrate altered microtubule dynamics as an important action of MTPAs in vivo. This sensitive and quantitative in vivo assay of microtubule dynamics may prove useful for pre-clinical and clinical development of the next generation of MTPAs as anticancer drugs.
微管是动态聚合物,在有丝分裂检查点、有丝分裂纺锤体组装和染色体分离中起核心作用。通过干扰微管动力学来阻断有丝分裂进程和细胞增殖的药物(微管靶向微管蛋白聚合剂(MTPAs))是强大的抗肿瘤药物。然而,MTPAs(如紫杉醇)对微管动力学的影响尚未在完整动物中直接得到证实。在此,我们描述了一种在体内将微管蛋白二聚体交换到微管中以测量微管动力学的方法。通过气相色谱/质谱法测量重水(²H₂O)中的氘(²H)掺入微管蛋白二聚体和聚合物中的情况。在培养的人肺癌和乳腺癌细胞系中,或在植入裸鼠的肿瘤中,微管蛋白二聚体和聚合微管表现出几乎相同的标记掺入率,反映了它们的快速交换。在体内²H₂O标记的24小时内给予紫杉醇,会降低聚合物中的²H标记,同时增加二聚体中的²H,表明二聚体进入聚合物的通量减少(即微管动态平衡受到抑制)。体内对微管动力学的抑制呈剂量依赖性,并且与DNA复制的抑制相关,DNA复制是肿瘤细胞生长的一种稳定同位素测量指标。相比之下,未处理小鼠坐骨神经中的微管聚合物与微管蛋白二聚体不存在动态平衡,而紫杉醇增加了聚合物中的标记掺入。我们的结果直接证明了微管动力学改变是MTPAs在体内的一个重要作用。这种灵敏且定量的体内微管动力学测定法可能对下一代MTPAs作为抗癌药物的临床前和临床开发有用。