Suzuki H, Onishi H, Takahashi K, Watanabe S
J Biochem. 1978 Dec;84(6):1529-42. doi: 10.1093/oxfordjournals.jbchem.a132278.
In our previous study (Onishi, H., Susuki, H., Nakamura, k., and Watanabe, S. J. Biochem. 83, 835-847, 1978), we found it to be characteristic of chicken gizzard myosin that thick filaments of gizzard myosin are readily disassembled by a stoichiometric amount of ATP (3 mol of ATP per mol of myosin), and that the ATPase activity of gizzard myosin in the ATP-disassembled state is much lower than that of gizzard myosin disassembled by a high concentration of KCl. We now report the following findings: (1) Thick filaments of (unphosphorylated) gizzard myosin can be in a bipolar structure or in a non-polar structure, depending on the method of preparing the thick filaments. (2) Thick filaments of (unphosphorylated) gizzard myosin in either the bioplar or the non-polar structure are readily disassembled by ATP. (3) Addition of rabbit skeletal C-protein does not confer ATP resistance on thick filaments of (unphosphorylated) gizzard myosin. (4) Unphosphorylated) gizzard myosin in the ATP-disassembled state is in a dimeric form as determined by ultracentrifugation. Moreover, 0.2 M KCl-dissociated gizzard myosin in monomeric form is converted to a dimeric form by ATP. (5) The Mg-ATPase activity of (unphosphorylated) gizzard myosin is much lower in its dimeric form (less than one-tenth) than in its monomeric form. The activity depression observed around 0.15 M KCl is therefore due to the formation of myosin dimers. (6) Skeletal L-meromyosin can increase the very low activity of (unphosphorylated) gizzard myosin ATPase at low ionic strength (0.13 M KCl) by forming ATP-resistant hybrid filaments with (unphosphorylated) gizzard myosin, preventing the formation of myosin dimers. (7) Gizzard myosin in which one of the light-chain components is phosphorylated by myosin light-chain kinase can form thick filaments which are resistant to the disassembling action of ATP. (8) Even in the presence of ATP, thick filaments of phosphorylated gizzard myosin do not disassembled into myosin dimers. Accordingly, the ATPase activity of phosphorylated gizzard myosin does not show activity depression at low ionic strength.
在我们之前的研究中(大西宏、铃木浩、中村健、渡边胜。《生物化学杂志》83卷,835 - 847页,1978年),我们发现鸡肌胃肌球蛋白的特征在于,肌胃肌球蛋白的粗丝很容易被化学计量的ATP(每摩尔肌球蛋白3摩尔ATP)拆解,并且处于ATP拆解状态的肌胃肌球蛋白的ATP酶活性远低于被高浓度KCl拆解的肌胃肌球蛋白。我们现在报告以下发现:(1)(未磷酸化的)肌胃肌球蛋白的粗丝可以呈双极结构或非极性结构,这取决于制备粗丝的方法。(2)双极或非极性结构的(未磷酸化的)肌胃肌球蛋白粗丝很容易被ATP拆解。(3)添加兔骨骼肌C蛋白不会使(未磷酸化的)肌胃肌球蛋白粗丝产生ATP抗性。(4)通过超速离心确定,处于ATP拆解状态的(未磷酸化的)肌胃肌球蛋白呈二聚体形式。此外,以单体形式存在的0.2M KCl解离的肌胃肌球蛋白会被ATP转化为二聚体形式。(5)(未磷酸化的)肌胃肌球蛋白的Mg - ATP酶活性在其二聚体形式下(不到十分之一)远低于其单体形式。因此,在0.15M KCl附近观察到的活性降低是由于肌球蛋白二聚体的形成。(6)骨骼肌L - 肌球蛋白可以通过与(未磷酸化的)肌胃肌球蛋白形成ATP抗性杂合丝,防止肌球蛋白二聚体的形成,从而在低离子强度(0.13M KCl)下提高(未磷酸化的)肌胃肌球蛋白ATP酶的极低活性。(7)其中一个轻链成分被肌球蛋白轻链激酶磷酸化的肌胃肌球蛋白可以形成对ATP拆解作用具有抗性的粗丝。(8)即使在有ATP存在的情况下,磷酸化的肌胃肌球蛋白粗丝也不会拆解成肌球蛋白二聚体。因此,磷酸化的肌胃肌球蛋白的ATP酶活性在低离子强度下不会表现出活性降低。