Suppr超能文献

Dysfunction and repair of the blood-retina barrier following white light exposure: a fluorophotometric and histologic study.

作者信息

Putting B J, Zweypfenning R C, Vrensen G F, Oosterhuis J A, Van Best J A

机构信息

Department of Ophthalmology, Leiden University Hospital, The Netherlands.

出版信息

Exp Eye Res. 1992 Jan;54(1):133-41. doi: 10.1016/0014-4835(92)90077-6.

Abstract

The purpose of this study was to pinpoint the site of blood-retina barrier disruption after white light exposure and determine the course of barrier repair. The retinas of 25 anaesthetized pigmented rabbits were exposed for 1 hr to the light of a xenon arc lamp filtered to eliminate ultraviolet and infrared light. The light intensities selected were near the threshold intensity causing visible retinal lesions in order to evaluate the function of the blood-retina barrier (BRB) in this range. Functional assessment of the BRB was made with vitreous fluorophotometry (VF), and electron microscopy (EM) after intra-arterial administration of horseradish peroxidase (HRP) as tracer. In 11 of the 14 rabbits exposed to threshold intensity (90-110 mW cm-2; retinal field of illumination, 0.64 cm2), a breakdown of the BRB was demonstrated by a 2-40-fold increase in the permeability of the BRB for fluorescein and by transcellular passage of HRP through the retina pigment epithelium (RPE). All 11 rabbits developed oedematous fundus lesions. Within a week, pigmentary alterations of the fundus were seen on ophthalmoscopy, while the BRB permeability for fluorescein and HRP had returned to normal. EM of the retina showed slight swelling of RPE during the period of increased permeability but no alterations of the neuroretina. After functional barrier repair, the RPE cells demonstrated irregularity of the melanin pigment alignment and some loss of the monocellular arrangement. In six rabbits exposed to subthreshold light intensity (65-89 mW cm-2) no fundus lesion developed and EM evaluation of the BRB was normal.2+ remains altered.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验