Suppr超能文献

大鼠心脏中辅酶A隔离与酮体氧化

Coenzyme A sequestration in rat hearts oxidizing ketone bodies.

作者信息

Russell R R, Taegtmeyer H

机构信息

Department of Medicine, University of Texas Medical School, Houston 77030.

出版信息

J Clin Invest. 1992 Mar;89(3):968-73. doi: 10.1172/JCI115679.

Abstract

Previous studies have indicated that ketone body-mediated contractile failure in rat hearts is due to inhibition of 2-oxoglutarate dehydrogenase, and it has been speculated that this inhibition is due to the sequestration of intramitochondrial CoA as acetoacetyl-CoA and acetyl-CoA. These studies were performed to determine whether oxidation of acetoacetate by isolated rat heart mitochondria results in a fall in intramitochondrial nonesterified CoA [CoASH] and whether increasing the available CoA improves contractile performance in hearts oxidizing acetoacetate. The oxidation of acetoacetate by isolated rat heart mitochondria resulted in depressed state 3 respiration as well as in a decrease in [CoASH]. Increasing the tissue content of CoASH in perfused hearts by providing the precursors for CoA relieved inhibition of 2-oxoglutarate dehydrogenase and improved the contractile performance of isolated working hearts. In contrast, the addition of carnitine increased the tissue content of CoASH but did not improve function. These findings suggest the presence of two different pools of CoASH. We conclude that ketone body-mediated inhibition of 2-oxoglutarate dehydrogenase is due to decreased intramitochondrial CoASH and that this inhibition of the citric acid cycle is a plausible mechanism for concomitant contractile failure.

摘要

以往的研究表明,大鼠心脏中酮体介导的收缩功能衰竭是由于2-氧代戊二酸脱氢酶受到抑制,并且据推测这种抑制是由于线粒体内的辅酶A(CoA)以乙酰乙酰辅酶A和乙酰辅酶A的形式被隔离。进行这些研究是为了确定离体大鼠心脏线粒体对乙酰乙酸的氧化是否会导致线粒体内非酯化辅酶A(CoASH)水平下降,以及增加可利用的辅酶A是否能改善氧化乙酰乙酸的心脏的收缩性能。离体大鼠心脏线粒体对乙酰乙酸的氧化导致状态3呼吸抑制以及CoASH水平降低。通过提供辅酶A的前体来增加灌注心脏中CoASH的组织含量,可缓解2-氧代戊二酸脱氢酶的抑制,并改善离体工作心脏的收缩性能。相比之下,添加肉碱可增加CoASH的组织含量,但并未改善功能。这些发现表明存在两种不同的CoASH池。我们得出结论,酮体介导的2-氧代戊二酸脱氢酶抑制是由于线粒体内CoASH减少,并且这种对柠檬酸循环的抑制是伴随收缩功能衰竭的一种合理机制。

相似文献

1
Coenzyme A sequestration in rat hearts oxidizing ketone bodies.
J Clin Invest. 1992 Mar;89(3):968-73. doi: 10.1172/JCI115679.
3
Propionyl-L-carnitine-mediated improvement in contractile function of rat hearts oxidizing acetoacetate.
Am J Physiol. 1995 Jan;268(1 Pt 2):H441-7. doi: 10.1152/ajpheart.1995.268.1.H441.
4
Regulation of fatty acid beta-oxidation in rat heart mitochondria.
Arch Biochem Biophys. 1991 Sep;289(2):274-80. doi: 10.1016/0003-9861(91)90472-u.
6
Regulation of acetoacetyl-CoA in isolated perfused rat hearts.
Eur J Biochem. 1981 Oct;119(2):295-9. doi: 10.1111/j.1432-1033.1981.tb05607.x.
8
Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation.
Circ Res. 2004 May 14;94(9):e78-84. doi: 10.1161/01.RES.0000129255.19569.8f. Epub 2004 Apr 22.
9
Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetate.
Am J Physiol. 1991 Dec;261(6 Pt 2):H1756-62. doi: 10.1152/ajpheart.1991.261.6.H1756.

引用本文的文献

1
Ketone body-supported respiration in murine isolated brain mitochondria is augmented by alpha-ketoglutarate and is optimized by neuronal SCOT expression.
Am J Physiol Endocrinol Metab. 2025 Jun 1;328(6):E822-E832. doi: 10.1152/ajpendo.00058.2025. Epub 2025 Apr 17.
2
Anaplerotic filling in heart failure: a review of mechanism and potential therapeutics.
Cardiovasc Res. 2024 Dec 31;120(17):2166-2178. doi: 10.1093/cvr/cvae248.
3
Metabolic Adaptation in Heart Failure and the Role of Ketone Bodies as Biomarkers.
Curr Heart Fail Rep. 2024 Oct;21(5):498-503. doi: 10.1007/s11897-024-00678-6. Epub 2024 Sep 7.
4
On the interdependence of ketone body oxidation, glycogen content, glycolysis and energy metabolism in the heart.
J Physiol. 2023 Apr;601(7):1207-1224. doi: 10.1113/JP284270. Epub 2023 Mar 1.
6
CARDIOKIN1: Computational Assessment of Myocardial Metabolic Capability in Healthy Controls and Patients With Valve Diseases.
Circulation. 2021 Dec 14;144(24):1926-1939. doi: 10.1161/CIRCULATIONAHA.121.055646. Epub 2021 Nov 11.
8
Fetal cardiomyocyte phenotype, ketone body metabolism, and mitochondrial dysfunction in the pathology of atrial fibrillation.
Mol Cell Biochem. 2021 Feb;476(2):1165-1178. doi: 10.1007/s11010-020-03980-8. Epub 2020 Nov 13.
10
Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure.
Circulation. 2016 Feb 23;133(8):706-16. doi: 10.1161/CIRCULATIONAHA.115.017545. Epub 2016 Jan 27.

本文引用的文献

1
2
Acetoacetate as fuel of respiration in the perfused rat heart.
Biochem J. 1961 Sep;80(3):540-7. doi: 10.1042/bj0800540.
5
Relationship between acid-soluble carnitine and coenzyme A pools in vivo.
Biochem J. 1980 Sep 15;190(3):495-504. doi: 10.1042/bj1900495.
6
Effect of carnitine on mitochondrial oxidation of palmitoylearnitine.
Biochem J. 1980 May 15;188(2):451-8. doi: 10.1042/bj1880451.
7
Subcellular distribution of phosphagens in isolated perfused rat heart.
FEBS Lett. 1980 Apr 7;112(2):273-6. doi: 10.1016/0014-5793(80)80196-7.
8
Effects of diabetes and fasting on pantothenic acid metabolism in rats.
Am J Physiol. 1981 Jun;240(6):E597-601. doi: 10.1152/ajpendo.1981.240.6.E597.
9
An improved method for isolation of mitochondria in high yields from normal, ischemic, and autolyzed rat hearts.
Anal Biochem. 1982 Sep 15;125(2):269-76. doi: 10.1016/0003-2697(82)90006-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验