Kot M
Department of Applied Mathematics, University of Washington, Seattle 98195.
J Math Biol. 1992;30(4):413-36. doi: 10.1007/BF00173295.
Integrodifference equations are discrete-time models that possess many of the attributes of continuous-time reaction-diffusion equations. They arise naturally in population biology as models for organisms with discrete nonoverlapping generations and well-defined growth and dispersal stages. I examined the varied travelling waves that arise in some simple ecologically-interesting integro-difference equations. For a scalar equation with compensatory growth, I observed only simple travelling waves. For carefully chosen redistribution kernels, one may derive the speed and approximate the shape of the observed waveforms. A model with overcompensation exhibited flip bifurcations and travelling cycles in addition to simple travelling waves. Finally, a simple predator-prey system possessed periodic wave trains and a variety of travelling waves.
积分差分方程是离散时间模型,具有许多连续时间反应扩散方程的属性。它们在种群生物学中自然出现,作为具有离散不重叠世代以及明确生长和扩散阶段的生物的模型。我研究了一些简单的、具有生态学意义的积分差分方程中出现的各种行波。对于一个具有补偿性增长的标量方程,我只观察到简单的行波。对于精心选择的再分布核,可以推导出速度并近似观察到的波形形状。一个具有过补偿的模型除了简单行波外,还表现出翻转分岔和行波周期。最后,一个简单的捕食者 - 猎物系统具有周期性波列和各种行波。