Wouchuk J G, Nishihara K
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Aug;70(2 Pt 2):026305. doi: 10.1103/PhysRevE.70.026305. Epub 2004 Aug 13.
It is known that for some values of the initial parameters that define the Richtmyer-Meshkov instability, the normal velocity at the contact surface vanishes asymptotically in time. This phenomenon, called freeze-out, is studied here with an exact analytic model. The instability freeze-out, already considered by previous authors [K.O. Mikaelian, Phys. Fluids 6, 356 (1994), Y. Yang, Q. Zhang, and D.H. Sharp, Phys. Fluids 6, 1856 (1994), and A.L. Velikovich, Phys. Fluids 8, 1666 (1996)], is the result of a subtle interaction between the unstable surface and the corrugated shock fronts. In particular, it is seen that the transmitted shock at the contact surface plays a key role in determining the asymptotic behavior of the normal velocity at the contact surface. By properly tuning the fluids compressibilities, the density jump, and the incident shock Mach number, the value of the initial circulation deposited by the reflected and transmitted shocks at the material interface can be adjusted in such a way that the normal growth at the contact surface will vanish for large times. The conditions for this to happen are calculated exactly, by expressing the initial density ratio as a function of the other parameters of the problem: fluids compressibilities and incident shock Mach number. This is done by means of a linear theory model developed in a previous work [J.G. Wouchuk, Phys. Rev. E. 63, 056303 (2001)]. A general and qualitative criterion to decide the conditions for freezing-out is derived, and the evolution of different cases (freeze-out and non-freeze-out) are studied with some detail. A comparison with previous works is also presented.
众所周知,对于定义瑞特迈尔-梅什科夫不稳定性的某些初始参数值,接触面上的法向速度会随时间渐近消失。这种被称为冻结的现象,在此用一个精确的解析模型进行研究。先前的作者[K.O. 米卡利安,《物理流体》6, 356 (1994),Y. 杨、Q. 张和D.H. 夏普,《物理流体》6, 1856 (1994),以及A.L. 韦利科维奇,《物理流体》8, 1666 (1996)]已经考虑过的不稳定性冻结,是不稳定表面与波纹状激波前沿之间微妙相互作用的结果。特别地,可以看到接触面上的透射激波在确定接触面上法向速度的渐近行为中起着关键作用。通过适当地调整流体的压缩性、密度跃变和入射激波马赫数,可以调整反射激波和透射激波在物质界面处沉积的初始环流量值,使得接触面上的法向增长在长时间后消失。通过将初始密度比表示为问题的其他参数(流体压缩性和入射激波马赫数)的函数,精确计算出发生这种情况的条件。这是借助于先前工作[J.G. 沃丘克,《物理评论E》63, 056303 (2001)]中开发的线性理论模型来完成的。推导了一个用于确定冻结条件的通用定性准则,并详细研究了不同情况(冻结和非冻结)的演化。还与先前的工作进行了比较。