Suppr超能文献

激波反射时线性里希特迈尔-梅什科夫不稳定性的解析标度

Analytical scalings of the linear Richtmyer-Meshkov instability when a shock is reflected.

作者信息

Campos F Cobos, Wouchuk J G

机构信息

E.T.S.I. Industriales, Instituto de Investigaciones Energéticas, and CYTEMA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.

出版信息

Phys Rev E. 2016 May;93(5):053111. doi: 10.1103/PhysRevE.93.053111. Epub 2016 May 18.

Abstract

When a planar shock hits a corrugated contact surface between two fluids, hydrodynamic perturbations are generated in both fluids that result in asymptotic normal and tangential velocity perturbations in the linear stage, the so called Richtmyer-Meshkov instability. In this work, explicit and exact analytical expansions of the asymptotic normal velocity (δv_{i}^{∞}) are presented for the general case in which a shock is reflected back. The expansions are derived from the conservation equations and take into account the whole perturbation history between the transmitted and reflected fronts. The important physical limits of weak and strong shocks and the high/low preshock density ratio at the contact surface are shown. An approximate expression for the normal velocity, valid even for high compression regimes, is given. A comparison with recent experimental data is done. The contact surface ripple growth is studied during the linear phase showing good agreement between theory and experiments done in a wide range of incident shock Mach numbers and preshock density ratios, for the cases in which the initial ripple amplitude is small enough. In particular, it is shown that in the linear asymptotic phase, the contact surface ripple (ψ_{i}) grows as ψ_{∞}+δv_{i}^{∞}t, where ψ_{∞} is an asymptotic ordinate different from the postshock ripple amplitude at t=0+. This work is a continuation of the calculations of F. Cobos Campos and J. G. Wouchuk, [Phys. Rev. E 90, 053007 (2014)PLEEE81539-375510.1103/PhysRevE.90.053007] for a single shock moving into one fluid.

摘要

当平面激波撞击两种流体之间的波纹状接触面时,两种流体中都会产生流体动力学扰动,这会导致线性阶段出现渐近法向和切向速度扰动,即所谓的瑞利 - 迈斯科夫不稳定性。在这项工作中,针对激波反射回来的一般情况,给出了渐近法向速度(δvi)的显式且精确的解析展开式。这些展开式是从守恒方程推导出来的,并考虑了透射波前和反射波前之间的整个扰动历史。展示了弱激波和强激波以及接触面处高低预激波密度比的重要物理极限情况。给出了即使在高压缩状态下也有效的法向速度近似表达式。与最近的实验数据进行了比较。研究了线性阶段接触面波纹的增长情况,结果表明,对于初始波纹幅度足够小的情况,在很宽的入射激波马赫数和预激波密度比范围内,理论与实验结果吻合良好。特别地,结果表明在线性渐近阶段,接触面波纹(ψi)的增长形式为ψ+δvit,其中ψ是一个渐近纵坐标,不同于t = 0 + 时的激波后波纹幅度。这项工作是F. 科沃斯·坎波斯和J. G. 沃丘克[《物理评论E》90, 053007 (2014)PLEEE81539 - 375510.1103/PhysRevE.90.053007]关于单个激波进入一种流体的计算工作的延续。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验