Cobos-Campos F, Wouchuk J G
E. T. S. I. Industriales, Instituto de Investigaciones Energéticas and CYTEMA, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain.
Phys Rev E. 2017 Jul;96(1-1):013102. doi: 10.1103/PhysRevE.96.013102. Epub 2017 Jul 5.
The Richtmyer-Meshkov instability for the case of a reflected rarefaction is studied in detail following the growth of the contact surface in the linear regime and providing explicit analytical expressions for the asymptotic velocities in different physical limits. This work is a continuation of the similar problem when a shock is reflected [Phys. Rev. E 93, 053111 (2016)1539-375510.1103/PhysRevE.93.053111]. Explicit analytical expressions for the asymptotic normal velocity of the rippled surface (δv_{i}^{∞}) are shown. The known analytical solution of the perturbations growing inside the rarefaction fan is coupled to the pressure perturbations between the transmitted shock front and the rarefaction trailing edge. The surface ripple growth (ψ_{i}) is followed from t=0+ up to the asymptotic stage inside the linear regime. As in the shock reflected case, an asymptotic behavior of the form ψ_{i}(t)≅ψ_{∞}+δv_{i}^{∞}t is observed, where ψ_{∞} is an asymptotic ordinate to the origin. Approximate expressions for the asymptotic velocities are given for arbitrary values of the shock Mach number. The asymptotic velocity field is calculated at both sides of the contact surface. The kinetic energy content of the velocity field is explicitly calculated. It is seen that a significant part of the motion occurs inside a fluid layer very near the material surface in good qualitative agreement with recent simulations. The important physical limits of weak and strong shocks and high and low preshock density ratio are also discussed and exact Taylor expansions are given. The results of the linear theory are compared to simulations and experimental work [R. L. Holmes et al., J. Fluid Mech. 389, 55 (1999)JFLSA70022-112010.1017/S0022112099004838; C. Mariani et al., Phys. Rev. Lett. 100, 254503 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.254503]. The theoretical predictions of δv_{i}^{∞} and ψ_{∞} show good agreement with the experimental and numerical reported values.
本文详细研究了反射稀疏情况下的里希特迈尔 - 梅什科夫不稳定性,跟踪了线性区域内接触面的增长情况,并给出了不同物理极限下渐近速度的显式解析表达式。这项工作是对激波反射时类似问题的延续[《物理评论E》93, 053111 (2016)1539 - 375510.1103/PhysRevE.93.053111]。给出了波纹表面渐近法向速度(δv_{i}^{∞})的显式解析表达式。稀疏波扇区内增长的扰动的已知解析解与透射激波前沿和稀疏波后沿之间的压力扰动相耦合。跟踪了从t = 0 + 到线性区域内渐近阶段的表面波纹增长(ψ_{i})。与激波反射情况一样,观察到ψ_{i}(t)≅ψ_{∞}+δv_{i}^{∞}t形式的渐近行为,其中ψ_{∞}是相对于原点的渐近纵坐标。给出了任意激波马赫数下渐近速度的近似表达式。计算了接触面两侧的渐近速度场。明确计算了速度场的动能含量。可以看出,很大一部分运动发生在非常靠近材料表面的流体层内,这与最近的模拟结果在定性上有很好的一致性。还讨论了弱激波和强激波及高预激波密度比和低预激波密度比的重要物理极限,并给出了精确的泰勒展开式。将线性理论的结果与模拟和实验工作进行了比较[R. L. 霍姆斯等人,《流体力学杂志》389, 55 (1999)JFLSA70022 - 112010.1017/S0022112099004838;C. 马里亚尼等人,《物理评论快报》100, 254503 (2008)PRLTAO0031 - 900710.1103/PhysRevLett.100.254503]。δv_{i}^{∞}和ψ_{∞}的理论预测与实验和数值报道值显示出良好的一致性。