Suppr超能文献

Directed assembly of controlled-misorientation bicrystals.

作者信息

Marks Robert A, Taylor Seth T, Mammana Ennio, Gronsky Ronald, Glaeser Andreas M

机构信息

Division of Materials Sciences, Lawrence Berkeley National Laboratory and Department of Materials Science and Engineering, University of California Berkeley, California 94720-1760, USA.

出版信息

Nat Mater. 2004 Oct;3(10):682-6. doi: 10.1038/nmat1214. Epub 2004 Sep 26.

Abstract

Grain boundaries play a vital role in determining materials behaviour, and the nature of these intercrystalline interfaces is dictated by chemical composition, processing history, and geometry (misorientation and inclination). The interrelation among these variables and material properties may be systematically studied in bicrystals. Conventional bicrystal fabrication offers control over these variables, but its ability to mimic grain boundaries in polycrystalline materials is ambiguous. Here we describe a novel solid-state process for rapidly generating intercrystalline interfaces with controlled geometry and chemistry, applicable to a broad range of materials. A fine-grained polycrystalline layer, contacted by two appropriately misoriented single-crystal seeds, is consumed by an epitaxial solid-state transformation until the directed growth fronts impinge. The seed misorientations establish the geometry of the resulting intercrystalline boundaries, and the composition of the sacrificial polycrystalline layer establishes the chemistry of the boundaries and their adjacent grains. Results from a challenging model system, titanium-doped sapphire, illustrate the viability of the directed assembly technique for preparing high-quality bicrystals in both twist and tilt configurations.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验