Suppr超能文献

使用辅助传感器的高光谱图像分辨率增强的最大后验估计

MAP estimation for hyperspectral image resolution enhancement using an auxiliary sensor.

作者信息

Hardie Russell C, Eismann Michael T, Wilson Gregory L

机构信息

Department of Electrical and Computer Engineering and Electro-Optics Program, University of Dayton, Dayton, OH 45459-0226, USA.

出版信息

IEEE Trans Image Process. 2004 Sep;13(9):1174-84. doi: 10.1109/tip.2004.829779.

Abstract

This paper presents a novel maximum a posteriori estimator for enhancing the spatial resolution of an image using co-registered high spatial-resolution imagery from an auxiliary sensor. Here, we focus on the use of high-resolution panchomatic data to enhance hyperspectral imagery. However, the estimation framework developed allows for any number of spectral bands in the primary and auxiliary image. The proposed technique is suitable for applications where some correlation, either localized or global, exists between the auxiliary image and the image being enhanced. To exploit localized correlations, a spatially varying statistical model, based on vector quantization, is used. Another important aspect of the proposed algorithm is that it allows for the use of an accurate observation model relating the "true" scene with the low-resolutions observations. Experimental results with hyperspectral data derived from the airborne visible-infrared imaging spectrometer are presented to demonstrate the efficacy of the proposed estimator.

摘要

本文提出了一种新颖的最大后验估计器,用于利用来自辅助传感器的配准高空间分辨率图像来提高图像的空间分辨率。在此,我们专注于使用高分辨率全色数据来增强高光谱图像。然而,所开发的估计框架允许主图像和辅助图像中有任意数量的光谱带。所提出的技术适用于辅助图像与待增强图像之间存在某种局部或全局相关性的应用。为了利用局部相关性,使用了基于矢量量化的空间可变统计模型。所提算法的另一个重要方面是它允许使用将“真实”场景与低分辨率观测相关联的精确观测模型。给出了从机载可见红外成像光谱仪获得的高光谱数据的实验结果,以证明所提估计器的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验