Chi Yujin, Zhang Nannan, Jin Liuyuan, Liao Shibin, Zhang Hao, Chen Li
Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Sensors (Basel). 2024 Feb 16;24(4):1267. doi: 10.3390/s24041267.
This study investigates the application of hyperspectral image space-spectral fusion technology in lithologic classification, using data from China's GF-5 and Europe's Sentinel-2A. The research focuses on the southern region of Tuanjie Peak in the Western Kunlun Range, comparing five space-spectral fusion methods: GSA, SFIM, CNMF, HySure, and NonRegSRNet. To comprehensively evaluate the effectiveness and applicability of these fusion methods, the study conducts a comprehensive assessment from three aspects: evaluation of fusion effects, lithologic classification experiments, and field validation. In the evaluation of fusion effects, the study uses an index analysis and comparison of spectral curves before and after fusion, concluding that the GSA fusion method performs the best. For lithologic classification, the Random Forest (RF) classification method is used, training with both area and point samples. The classification results from area sample training show significantly higher overall accuracy compared to point samples, aligning well with 1:50,000 scale geological maps. In field validation, the study employs on-site verification combined with microscopic identification and comparison of images with actual spectral fusion, finding that the classification results for the five lithologies are essentially consistent with field validation results. The "GSA+RF" method combination established in this paper, based on data from GF-5 and Sentinel-2A satellites, can provide technical support for lithological classification in similar high-altitude regions.
本研究利用中国的高分五号(GF-5)和欧洲的哨兵-2A(Sentinel-2A)数据,探讨高光谱图像空间-光谱融合技术在岩性分类中的应用。研究聚焦于西昆仑山脉团结峰南部地区,对比了五种空间-光谱融合方法:广义空间自适应(GSA)、简单比值融合法(SFIM)、非负矩阵分解(CNMF)、HySure和非正则化超分辨率网络(NonRegSRNet)。为全面评估这些融合方法的有效性和适用性,研究从融合效果评估、岩性分类实验和野外验证三个方面进行了综合评价。在融合效果评估中,研究通过对融合前后光谱曲线进行指标分析和比较,得出GSA融合方法效果最佳的结论。对于岩性分类,采用随机森林(RF)分类方法,使用面状和点状样本进行训练。面状样本训练的分类结果总体精度显著高于点状样本,与1:50000比例尺地质图吻合良好。在野外验证中,研究采用现场核查,结合微观鉴定以及将图像与实际光谱融合进行对比,发现五种岩性的分类结果与野外验证结果基本一致。本文基于高分五号和哨兵-2A卫星数据建立的“GSA+RF”方法组合,可为类似高海拔地区的岩性分类提供技术支持。