Suppr超能文献

基于自动化提取图像端元和基于稀疏性解混的高光谱和多光谱图像融合,以应对光谱可变性。

Hyperspectral and Multispectral Image Fusion with Automated Extraction of Image-Based Endmember Bundles and Sparsity-Based Unmixing to Deal with Spectral Variability.

机构信息

Institut de Recherche en Astrophysique et Planétologie (IRAP), Université de Toulouse, UPS-CNRS-CNES, 31400 Toulouse, France.

Laboratoire Signaux et Images, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf, Bir El Djir, Oran 31000, Algeria.

出版信息

Sensors (Basel). 2023 Feb 20;23(4):2341. doi: 10.3390/s23042341.

Abstract

The aim of fusing hyperspectral and multispectral images is to overcome the limitation of remote sensing hyperspectral sensors by improving their spatial resolutions. This process, also known as hypersharpening, generates an unobserved high-spatial-resolution hyperspectral image. To this end, several hypersharpening methods have been developed, however most of them do not consider the spectral variability phenomenon; therefore, neglecting this phenomenon may cause errors, which leads to reducing the spatial and spectral quality of the sharpened products. Recently, new approaches have been proposed to tackle this problem, particularly those based on spectral unmixing and using parametric models. Nevertheless, the reported methods need a large number of parameters to address spectral variability, which inevitably yields a higher computation time compared to the standard hypersharpening methods. In this paper, a new hypersharpening method addressing spectral variability by considering the spectra bundles-based method, namely the (AEEB), and the sparsity-based method called (SUnSAL), is introduced. This new method called (HSB-SV) was tested on both synthetic and real data. Experimental results showed that HSB-SV provides sharpened products with higher spectral and spatial reconstruction fidelities with a very low computational complexity compared to other methods dealing with spectral variability, which are the main contributions of the designed method.

摘要

融合高光谱和多光谱图像的目的是通过提高其空间分辨率来克服遥感高光谱传感器的局限性。这一过程也称为高光谱锐化,生成一个未观测到的高空间分辨率高光谱图像。为此,已经开发了几种高光谱锐化方法,但是大多数方法都没有考虑光谱可变性现象;因此,忽略这种现象可能会导致错误,从而降低锐化产品的空间和光谱质量。最近,已经提出了新的方法来解决这个问题,特别是那些基于光谱解混和使用参数模型的方法。然而,所报道的方法需要大量的参数来解决光谱可变性问题,这不可避免地导致与标准高光谱锐化方法相比计算时间更长。在本文中,提出了一种新的高光谱锐化方法,通过考虑基于光谱束的方法(即 AEEB)和基于稀疏性的方法(即 SUnSAL)来解决光谱可变性问题。这种新方法称为 HSB-SV,已在合成和真实数据上进行了测试。实验结果表明,与处理光谱可变性的其他方法相比,HSB-SV 提供的锐化产品具有更高的光谱和空间重建保真度,并且具有非常低的计算复杂度,这是所设计方法的主要贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc80/9959671/4fe11d82cbb2/sensors-23-02341-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验