Suppr超能文献

通过遗传网络和深度学习模型关联,对非综合征型唇裂伴或不伴腭裂的遗传风险评估。

Genetic Risk Assessment of Nonsyndromic Cleft Lip with or without Cleft Palate by Linking Genetic Networks and Deep Learning Models.

机构信息

Department of Medical Genetics, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea.

Department of Orthodontics, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea.

出版信息

Int J Mol Sci. 2023 Feb 25;24(5):4557. doi: 10.3390/ijms24054557.

Abstract

Recent deep learning algorithms have further improved risk classification capabilities. However, an appropriate feature selection method is required to overcome dimensionality issues in population-based genetic studies. In this Korean case-control study of nonsyndromic cleft lip with or without cleft palate (NSCL/P), we compared the predictive performance of models that were developed by using the genetic-algorithm-optimized neural networks ensemble (GANNE) technique with those models that were generated by eight conventional risk classification methods, including polygenic risk score (PRS), random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), and deep-learning-based artificial neural network (ANN). GANNE, which is capable of automatic input SNP selection, exhibited the highest predictive power, especially in the 10-SNP model (AUC of 88.2%), thus improving the AUC by 23% and 17% compared to PRS and ANN, respectively. Genes mapped with input SNPs that were selected by using a genetic algorithm (GA) were functionally validated for risks of developing NSCL/P in gene ontology and protein-protein interaction (PPI) network analyses. The gene, which is most frequently selected via GA, was also a major hub gene in the PPI network. Genes such as , , , , and significantly contributed to predicting NSCL/P risk. GANNE is an efficient disease risk classification method using a minimum optimal set of SNPs; however, further validation studies are needed to ensure the clinical utility of the model for predicting NSCL/P risk.

摘要

最近的深度学习算法进一步提高了风险分类能力。然而,在基于人群的遗传研究中,需要适当的特征选择方法来克服维度问题。在这项韩国非综合征性唇裂伴或不伴腭裂(NSCL/P)的病例对照研究中,我们比较了使用遗传算法优化神经网络集成(GANNE)技术开发的模型与包括多基因风险评分(PRS)、随机森林(RF)、支持向量机(SVM)、极端梯度提升(XGBoost)和基于深度学习的人工神经网络(ANN)在内的八种传统风险分类方法生成的模型的预测性能。GANNE 能够自动进行输入 SNP 选择,表现出最高的预测能力,特别是在 10-SNP 模型中(AUC 为 88.2%),与 PRS 和 ANN 相比,AUC 分别提高了 23%和 17%。通过遗传算法(GA)选择输入 SNP 所映射的基因,在基因本体和蛋白质-蛋白质相互作用(PPI)网络分析中对 NSCL/P 发病风险进行了功能验证。通过 GA 最频繁选择的基因也是 PPI 网络中的主要枢纽基因。基因如 、 、 、 、 对预测 NSCL/P 风险有显著贡献。GANNE 是一种使用最小最优 SNP 集的有效疾病风险分类方法;然而,需要进一步的验证研究来确保该模型预测 NSCL/P 风险的临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89a7/10003462/a38f9ef9914c/ijms-24-04557-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验