Sapra Aparna K, Arava Yoav, Khandelia Piyush, Vijayraghavan Usha
Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
J Biol Chem. 2004 Dec 10;279(50):52437-46. doi: 10.1074/jbc.M408815200. Epub 2004 Sep 27.
Removal of pre-mRNA introns is an essential step in eukaryotic genome interpretation. The spliceosome, a ribonucleoprotein performs this critical function; however, precise roles for many of its proteins remain unknown. Genome-wide consequences triggered by the loss of a specific factor can elucidate its function in splicing and its impact on other cellular processes. We have employed splicing-sensitive DNA microarrays, with yeast open reading frames and intron sequences, to detect changes in splicing efficiency and global expression. Comparison of expression profiles, for intron-containing transcripts, among mutants of two second-step factors, Prp17 and Prp22, reveals their unique and shared effects on global splicing. This analysis enabled the identification of substrates dependent on Prp17. We find a significant Prp17 role in splicing of introns which are longer than 200nts and note its dispensability when introns have a < or =13-nucleotide spacing between their branch point nucleotide and 3 ' splice site. In vitro splicing of substrates with varying branch nucleotide to 3 ' splice site distances supports the differential Prp17 dependencies inferred from the in vivo analysis. Furthermore, we tested the predicted dispensability of Prp17 for splicing short introns in the evolutionarily distant yeast, Schizosaccharomyces pombe, where the genome contains predominantly short introns. SpPrp17 was non-essential at all growth temperatures implying that functional evolution of splicing factors is integrated with genome evolution. Together our studies point to a role for budding yeast Prp17 in splicing of subsets of introns and have predictive value for deciphering the functions of splicing factors in gene expression and regulation in other eukaryotes.
去除前体mRNA内含子是真核生物基因组解读中的关键步骤。剪接体作为一种核糖核蛋白执行这一重要功能;然而,其许多蛋白质的确切作用仍不清楚。特定因子缺失引发的全基因组效应能够阐明其在剪接中的功能及其对其他细胞过程的影响。我们利用含有酵母开放阅读框和内含子序列的剪接敏感DNA微阵列,来检测剪接效率和整体表达的变化。对两个第二步因子Prp17和Prp22突变体中含内含子转录本的表达谱进行比较,揭示了它们对整体剪接的独特和共同影响。该分析使得能够鉴定依赖Prp17的底物。我们发现Prp17在长度超过200个核苷酸的内含子剪接中发挥重要作用,并注意到当内含子的分支点核苷酸与3'剪接位点之间的间距小于或等于13个核苷酸时,Prp17是可有可无的。对具有不同分支核苷酸到3'剪接位点距离的底物进行体外剪接,支持了从体内分析推断出的Prp17的不同依赖性。此外,我们测试了在进化上距离较远的酵母粟酒裂殖酵母中Prp17对短内含子剪接的预测可有可无性,该酵母的基因组主要包含短内含子。SpPrp17在所有生长温度下都是非必需的,这意味着剪接因子的功能进化与基因组进化是整合在一起的。我们的研究共同表明,芽殖酵母Prp17在部分内含子的剪接中发挥作用,并且对于解读其他真核生物中剪接因子在基因表达和调控中的功能具有预测价值。