Albrecht Dirk R, Sah Robert L, Bhatia Sangeeta N
Department of Bioengineering, Whitaker Institute of Biomedical Engineering, University of California-San Diego, La Jolla, California 92093, USA.
Biophys J. 2004 Oct;87(4):2131-47. doi: 10.1529/biophysj.104.039511.
Dielectrophoretic (DEP) forces have been used extensively to manipulate, separate, and localize biological cells and bioparticles via high-gradient electric fields. However, minimization of DEP exposure time is desirable, because of possible untoward effects on cell behavior. Toward this goal, this article investigates the geometric and material determinants of particle patterning kinetics and efficiency. In particular, the time required to achieve a steady-state pattern is theoretically modeled and experimentally validated for a planar, interdigitated bar electrode array energized in a standing-wave configuration. This measure of patterning efficiency is calculated from an improved Fourier series solution of DEP force, in which realistic boundary conditions and a finite chamber height are imposed to reflect typical microfluidic applications. The chamber height, electrode spacing, and fluid viscosity and conductivity are parameters that profoundly affect patterning efficiency, and optimization can reduce electric field exposure by orders of magnitude. Modeling strategies are generalizable to arbitrary electrode design as well as to conditions where DEP force may not act alone to cause particle motion. This improved understanding of DEP patterning kinetics provides a framework for new advances in the development of DEP-based biological devices and assays with minimal perturbation of cell behavior.
介电泳(DEP)力已被广泛用于通过高梯度电场来操控、分离和定位生物细胞及生物颗粒。然而,由于可能对细胞行为产生不良影响,尽量缩短DEP暴露时间是很有必要的。为实现这一目标,本文研究了颗粒图案化动力学和效率的几何及材料决定因素。具体而言,对于以驻波配置通电的平面叉指条形电极阵列,实现稳态图案所需的时间进行了理论建模和实验验证。这种图案化效率的度量是根据改进的DEP力傅里叶级数解计算得出的,其中施加了实际边界条件和有限的腔室高度以反映典型的微流体应用。腔室高度、电极间距、流体粘度和电导率是深刻影响图案化效率的参数,优化这些参数可将电场暴露降低几个数量级。建模策略可推广到任意电极设计以及DEP力可能并非单独导致颗粒运动的情况。对DEP图案化动力学的这种深入理解为基于DEP的生物装置和检测方法的新进展提供了框架,同时对细胞行为的干扰最小。