Suppr超能文献

介电泳图案化效率的几何和材料决定因素。

Geometric and material determinants of patterning efficiency by dielectrophoresis.

作者信息

Albrecht Dirk R, Sah Robert L, Bhatia Sangeeta N

机构信息

Department of Bioengineering, Whitaker Institute of Biomedical Engineering, University of California-San Diego, La Jolla, California 92093, USA.

出版信息

Biophys J. 2004 Oct;87(4):2131-47. doi: 10.1529/biophysj.104.039511.

Abstract

Dielectrophoretic (DEP) forces have been used extensively to manipulate, separate, and localize biological cells and bioparticles via high-gradient electric fields. However, minimization of DEP exposure time is desirable, because of possible untoward effects on cell behavior. Toward this goal, this article investigates the geometric and material determinants of particle patterning kinetics and efficiency. In particular, the time required to achieve a steady-state pattern is theoretically modeled and experimentally validated for a planar, interdigitated bar electrode array energized in a standing-wave configuration. This measure of patterning efficiency is calculated from an improved Fourier series solution of DEP force, in which realistic boundary conditions and a finite chamber height are imposed to reflect typical microfluidic applications. The chamber height, electrode spacing, and fluid viscosity and conductivity are parameters that profoundly affect patterning efficiency, and optimization can reduce electric field exposure by orders of magnitude. Modeling strategies are generalizable to arbitrary electrode design as well as to conditions where DEP force may not act alone to cause particle motion. This improved understanding of DEP patterning kinetics provides a framework for new advances in the development of DEP-based biological devices and assays with minimal perturbation of cell behavior.

摘要

介电泳(DEP)力已被广泛用于通过高梯度电场来操控、分离和定位生物细胞及生物颗粒。然而,由于可能对细胞行为产生不良影响,尽量缩短DEP暴露时间是很有必要的。为实现这一目标,本文研究了颗粒图案化动力学和效率的几何及材料决定因素。具体而言,对于以驻波配置通电的平面叉指条形电极阵列,实现稳态图案所需的时间进行了理论建模和实验验证。这种图案化效率的度量是根据改进的DEP力傅里叶级数解计算得出的,其中施加了实际边界条件和有限的腔室高度以反映典型的微流体应用。腔室高度、电极间距、流体粘度和电导率是深刻影响图案化效率的参数,优化这些参数可将电场暴露降低几个数量级。建模策略可推广到任意电极设计以及DEP力可能并非单独导致颗粒运动的情况。对DEP图案化动力学的这种深入理解为基于DEP的生物装置和检测方法的新进展提供了框架,同时对细胞行为的干扰最小。

相似文献

1
Geometric and material determinants of patterning efficiency by dielectrophoresis.
Biophys J. 2004 Oct;87(4):2131-47. doi: 10.1529/biophysj.104.039511.
2
Basic theory of dielectrophoresis and electrorotation.
IEEE Eng Med Biol Mag. 2003 Nov-Dec;22(6):33-42. doi: 10.1109/memb.2003.1304999.
3
Modeling of dielectrophoretic particle motion: Point particle versus finite-sized particle.
Electrophoresis. 2017 Jun;38(11):1407-1418. doi: 10.1002/elps.201600461. Epub 2017 Feb 23.
5
Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.
Electrophoresis. 2011 Jun;32(11):1337-47. doi: 10.1002/elps.201000548. Epub 2011 Apr 28.
6
The potential of dielectrophoresis for single-cell experiments.
IEEE Eng Med Biol Mag. 2003 Nov-Dec;22(6):51-61. doi: 10.1109/memb.2003.1266047.
7
Electrical forces for microscale cell manipulation.
Annu Rev Biomed Eng. 2006;8:425-54. doi: 10.1146/annurev.bioeng.8.061505.095739.
8
Multiphase electrodes for microbead control applications: integration of DEP and electrokinetics for bio-particle positioning.
Biosens Bioelectron. 2007 May 15;22(11):2539-45. doi: 10.1016/j.bios.2006.10.012. Epub 2006 Nov 16.
10
Dielectrophoretic registration of living cells to a microelectrode array.
Biosens Bioelectron. 2004 Jul 15;19(12):1765-74. doi: 10.1016/j.bios.2004.03.016.

引用本文的文献

2
Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles.
ACS Biomater Sci Eng. 2021 Jun 14;7(6):2043-2063. doi: 10.1021/acsbiomaterials.1c00083. Epub 2021 Apr 19.
3
Magnetic field sensors using arrays of electrospun magnetoelectric Janus nanowires.
Microsyst Nanoeng. 2018 Dec 3;4:37. doi: 10.1038/s41378-018-0038-x. eCollection 2018.
4
A hybrid dielectrophoretic system for trapping of microorganisms from water.
Biomicrofluidics. 2015 Jun 15;9(3):034110. doi: 10.1063/1.4922276. eCollection 2015 May.
5
Virus enrichment for single virus infection by using 3D insulator based dielectrophoresis.
PLoS One. 2014 Jun 11;9(2):e94083. doi: 10.1371/journal.pone.0094083. eCollection 2014.
6
Direct assembling methodologies for high-throughput bioscreening.
Biotechnol J. 2011 Dec;6(12):1454-65. doi: 10.1002/biot.201100100. Epub 2011 Oct 21.
8
Negative dielectrophoretic capture of bacterial spores in food matrices.
Biomicrofluidics. 2010 Aug 17;4(3):034107. doi: 10.1063/1.3479998.
9
Puncture mechanics of cnidarian cnidocysts: a natural actuator.
J Biol Eng. 2009 Sep 28;3:17. doi: 10.1186/1754-1611-3-17.

本文引用的文献

1
Dielectrophoretic forces can be safely used to retain viable cells in perfusion cultures of animal cells.
Cytotechnology. 1999 Jul;30(1-3):133-42. doi: 10.1023/A:1008050809217.
2
Dielectrophoretic registration of living cells to a microelectrode array.
Biosens Bioelectron. 2004 Feb 15;19(7):771-80. doi: 10.1016/j.bios.2003.08.013.
3
Cell culture: biology's new dimension.
Nature. 2003 Aug 21;424(6951):870-2. doi: 10.1038/424870a.
4
Modeling tissue-specific signaling and organ function in three dimensions.
J Cell Sci. 2003 Jun 15;116(Pt 12):2377-88. doi: 10.1242/jcs.00503.
5
Cell interactions with three-dimensional matrices.
Curr Opin Cell Biol. 2002 Oct;14(5):633-9. doi: 10.1016/s0955-0674(02)00364-2.
6
Particle separation by dielectrophoresis.
Electrophoresis. 2002 Jul;23(13):1973-83. doi: 10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1.
7
A microfabrication-based dynamic array cytometer.
Anal Chem. 2002 Aug 15;74(16):3984-90. doi: 10.1021/ac0256235.
8
Microengineering of cellular interactions.
Annu Rev Biomed Eng. 2000;2:227-56. doi: 10.1146/annurev.bioeng.2.1.227.
9
Dielectrophoretic trapping of dissociated fetal cortical rat neurons.
IEEE Trans Biomed Eng. 2001 Aug;48(8):921-30. doi: 10.1109/10.936368.
10
Dielectrophoretic manipulation of macromolecules: the electric field.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Aug;64(2 Pt 2):026605. doi: 10.1103/PhysRevE.64.026605. Epub 2001 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验