Suppr超能文献

介电泳力可安全用于在动物细胞的灌注培养中保留活细胞。

Dielectrophoretic forces can be safely used to retain viable cells in perfusion cultures of animal cells.

机构信息

Bioengineering Laboratory, Department of Chemical Engineering, State University of New York, Buffalo, NY, 14260, USA.

出版信息

Cytotechnology. 1999 Jul;30(1-3):133-42. doi: 10.1023/A:1008050809217.

Abstract

Dielectrophoresis is a well established and effective means for the manipulation of viable cells. However, its effectiveness greatly depends upon the utilization of very low electrical conductivity media. High conductivity media, as in the case of cell culture media, result only in the induction of weaker repulsive forces (negative dielectrophoresis) and excessive medium heating. A dielectrophoresis-based cell separation device (DEP-filter) has been recently developed for perfusion cultures that successfully overcomes these obstacles and provides a very high degree of viable cell separation while most of the nonviable cells are removed from the bioreactor by the effluent stream. The latter results in high viabilities throughout the culture period and minimization of lysed cell proteases in the bioreactor. However, an important question that remains to be answered is whether we have any adverse effects by exposing the cultured cells to high frequency electric fields for extended periods of time. A special chamber was constructed to quantitate the effect under several operational conditions. Cell growth, glucose uptake, lactate and monoclonal antibody production data suggest that there is no appreciable effect and hence, operation over long periods of time of the DEP-filter should not have any adverse effect on the cultured cells.

摘要

介电泳是一种成熟且有效的方法,可用于操纵活细胞。然而,其有效性在很大程度上取决于低电导率介质的利用。高电导率介质,如细胞培养基的情况,只会导致较弱的排斥力(负介电泳)的诱导和过度的介质加热。最近开发了一种基于介电泳的细胞分离装置(DEP 过滤器),用于灌注培养,成功克服了这些障碍,在大多数非存活细胞被流出物从生物反应器中去除的同时,提供了非常高的活细胞分离度。后者导致整个培养期间的高存活率,并使生物反应器中的裂解细胞蛋白酶最小化。然而,一个仍然需要回答的重要问题是,长时间暴露于高频电场是否会对培养细胞产生任何不良影响。构建了一个特殊的腔室来在几种操作条件下定量评估这种影响。细胞生长、葡萄糖摄取、乳酸和单克隆抗体生产数据表明,没有明显的影响,因此,DEP 过滤器的长时间操作不应对培养细胞产生任何不良影响。

相似文献

1
Dielectrophoretic forces can be safely used to retain viable cells in perfusion cultures of animal cells.
Cytotechnology. 1999 Jul;30(1-3):133-42. doi: 10.1023/A:1008050809217.
2
Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
Adv Anat Embryol Cell Biol. 2003;173:III-IX, 1-77. doi: 10.1007/978-3-642-55469-8.
3
Separation of viable and nonviable animal cell using dielectrophoretic filter.
Biotechnol Prog. 2010 Jul-Aug;26(4):1061-7. doi: 10.1002/btpr.394.
4
A novel dielectrophoresis-based device for the selective retention of viable cells in cell culture media.
Biotechnol Bioeng. 1997 May 5;54(3):239-50. doi: 10.1002/(SICI)1097-0290(19970505)54:3<239::AID-BIT5>3.0.CO;2-G.
5
Dielectrophoretic Manipulation of Janus Particle in Conductive Media for Biomedical Applications.
Biotechnol J. 2020 Dec;15(12):e2000343. doi: 10.1002/biot.202000343. Epub 2020 Nov 1.
7
DNA manipulation by means of insulator-based dielectrophoresis employing direct current electric fields.
Electrophoresis. 2009 Dec;30(24):4195-205. doi: 10.1002/elps.200900355.
8
Glutaraldehyde enhanced dielectrophoretic yeast cell separation.
Biomicrofluidics. 2009 Nov 23;3(4):44108. doi: 10.1063/1.3257857.
9
10
Modifying dielectrophoretic response of nonviable yeast cells by ionic surfactant treatment.
Anal Chem. 2013 Jul 2;85(13):6364-71. doi: 10.1021/ac400741v. Epub 2013 Jun 14.

引用本文的文献

2
Correlation between dielectric property by dielectrophoretic levitation and growth activity of cells exposed to electric field.
Bioprocess Biosyst Eng. 2013 Sep;36(9):1219-27. doi: 10.1007/s00449-012-0849-3. Epub 2012 Nov 20.
4
Direct assembling methodologies for high-throughput bioscreening.
Biotechnol J. 2011 Dec;6(12):1454-65. doi: 10.1002/biot.201100100. Epub 2011 Oct 21.
5
Modeling of dielectrophoretic transport of myoglobin molecules in microchannels.
Biomicrofluidics. 2010 Mar 1;4(1):14105. doi: 10.1063/1.3339773.
6
Engineering amount of cell-cell contact demonstrates biphasic proliferative regulation through RhoA and the actin cytoskeleton.
Exp Cell Res. 2008 Sep 10;314(15):2846-54. doi: 10.1016/j.yexcr.2008.06.023. Epub 2008 Jul 9.
7
Dielectrophoretic traps for single-particle patterning.
Biophys J. 2005 Mar;88(3):2193-205. doi: 10.1529/biophysj.104.049684. Epub 2004 Dec 21.
8
Geometric and material determinants of patterning efficiency by dielectrophoresis.
Biophys J. 2004 Oct;87(4):2131-47. doi: 10.1529/biophysj.104.039511.

本文引用的文献

1
Cellular membrane potentials induced by alternating fields.
Biophys J. 1992 Dec;63(6):1632-42. doi: 10.1016/S0006-3495(92)81740-X.
2
Dual-frequency dielectrophoretic levitation of Canola protoplasts.
Biophys J. 1992 Jul;63(1):58-69. doi: 10.1016/S0006-3495(92)81586-2.
3
A novel dielectrophoresis-based device for the selective retention of viable cells in cell culture media.
Biotechnol Bioeng. 1997 May 5;54(3):239-50. doi: 10.1002/(SICI)1097-0290(19970505)54:3<239::AID-BIT5>3.0.CO;2-G.
4
High-density continuous cultures of hybridoma cells in a depth filter perfusion system.
Biotechnol Bioeng. 1994 Oct;44(8):895-901. doi: 10.1002/bit.260440805.
5
Baculovirus expression system scaleup by perfusion of high-density Sf-9 cell cultures.
Biotechnol Bioeng. 1994 Apr 15;43(9):881-91. doi: 10.1002/bit.260430907.
6
Selective recycle of viable animal cells by coupling of airlift reactor and cell settler.
Biotechnol Bioeng. 1992 Feb 20;39(4):442-6. doi: 10.1002/bit.260390410.
7
Influence of the screen material on the fouling of spin filters.
Biotechnol Bioeng. 1991 Jun 20;38(2):159-68. doi: 10.1002/bit.260380208.
8
Protein kinase C activity is altered in HL60 cells exposed to 60 Hz AC electric fields.
Bioelectromagnetics. 1996;17(6):504-9. doi: 10.1002/(SICI)1521-186X(1996)17:6<504::AID-BEM11>3.0.CO;2-K.
9
Selective retention of viable cells in ultrasonic resonance field devices.
Biotechnol Prog. 1996 Jan-Feb;12(1):73-6. doi: 10.1021/bp950040k.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验