Suppr超能文献

异染色质在酵母端粒处的扩散发生在M期。

Heterochromatin spreading at yeast telomeres occurs in M phase.

作者信息

Martins-Taylor Kristen, Dula Mary Lou, Holmes Scott G

机构信息

Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA.

出版信息

Genetics. 2004 Sep;168(1):65-75. doi: 10.1534/genetics.103.020149.

Abstract

Heterochromatin regulation of gene expression exhibits epigenetic inheritance, in which some feature of the structure is retained and can reseed formation in new cells. To understand the cell-cycle events that influence heterochromatin assembly and maintenance in budding yeast, we have conducted two types of experiments. First we have examined the kinetics of heterochromatin spreading at telomeres. We have constructed a strain in which the efficient silencing of a telomere-linked URA3 gene depends on the inducible expression of the Sir3 silencing factor. Prior studies determined that S-phase passage was required for the establishment of silencing at the HM loci in yeast. We find that establishment of silencing in our strain occurs at a point coincident with mitosis and does not require S-phase passage. In addition, we find that passage through mitosis is sufficient to establish silencing at the HML locus in a strain bearing a conditional allele of SIR3. Finally, we have also assessed the stability of yeast heterochromatin in the absence of the cis-acting elements required for its establishment. We show that silencing is stable through S phase in the absence of silencers and therefore possesses the ability to self-propagate through DNA replication. However, silencing is lost in the absence of silencers during progression through M phase. These experiments point to crucial events in mitosis influencing the assembly and persistence of heterochromatin.

摘要

基因表达的异染色质调控表现出表观遗传继承,其中结构的某些特征得以保留,并能在新细胞中重新引发形成过程。为了了解影响芽殖酵母中异染色质组装和维持的细胞周期事件,我们进行了两类实验。首先,我们研究了端粒处异染色质扩散的动力学。我们构建了一个菌株,其中端粒连接的URA3基因的有效沉默取决于Sir3沉默因子的诱导表达。先前的研究确定,酵母中HM位点的沉默建立需要经过S期。我们发现,在我们的菌株中,沉默的建立发生在与有丝分裂同时的时间点,且不需要经过S期。此外,我们发现,在携带SIR3条件等位基因的菌株中,经过有丝分裂足以在HML位点建立沉默。最后,我们还评估了在缺乏其建立所需的顺式作用元件的情况下酵母异染色质的稳定性。我们表明,在没有沉默子的情况下,沉默在S期是稳定的,因此具有通过DNA复制进行自我传播的能力。然而,在M期进程中,在没有沉默子的情况下沉默会丢失。这些实验指出了有丝分裂中影响异染色质组装和持久性的关键事件。

相似文献

1
Heterochromatin spreading at yeast telomeres occurs in M phase.
Genetics. 2004 Sep;168(1):65-75. doi: 10.1534/genetics.103.020149.
3
DNA replication-independent silencing in S. cerevisiae.
Science. 2001 Jan 26;291(5504):646-50. doi: 10.1126/science.291.5504.646.
4
Cell-cycle control of the establishment of mating-type silencing in S. cerevisiae.
Genes Dev. 2002 Nov 15;16(22):2935-45. doi: 10.1101/gad.764102.
5
Mutations in Ran system affected telomere silencing in Saccharomyces cerevisiae.
Biochem Biophys Res Commun. 2007 Nov 23;363(3):788-94. doi: 10.1016/j.bbrc.2007.09.054. Epub 2007 Sep 24.
6
The dynamics of yeast telomeres and silencing proteins through the cell cycle.
J Struct Biol. 2000 Apr;129(2-3):159-74. doi: 10.1006/jsbi.2000.4240.
7
A novel role for histone chaperones CAF-1 and Rtt106p in heterochromatin silencing.
EMBO J. 2007 May 2;26(9):2274-83. doi: 10.1038/sj.emboj.7601670. Epub 2007 Apr 5.
8
PCNA connects DNA replication to epigenetic inheritance in yeast.
Nature. 2000 Nov 9;408(6809):221-5. doi: 10.1038/35041601.
9
Regulation of transcriptional silencing in yeast by growth temperature.
J Mol Biol. 2004 Dec 3;344(4):893-905. doi: 10.1016/j.jmb.2004.10.002.

引用本文的文献

2
A Heterochromatin Domain Forms Gradually at a New Telomere and Is Dynamic at Stable Telomeres.
Mol Cell Biol. 2018 Jul 16;38(15). doi: 10.1128/MCB.00393-17. Print 2018 Aug 1.
3
Condensin-mediated remodeling of the mitotic chromatin landscape in fission yeast.
Nat Genet. 2017 Oct;49(10):1553-1557. doi: 10.1038/ng.3938. Epub 2017 Aug 21.
4
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae.
Genetics. 2016 Aug;203(4):1563-99. doi: 10.1534/genetics.112.145243.
5
The role of multiple marks in epigenetic silencing and the emergence of a stable bivalent chromatin state.
PLoS Comput Biol. 2013;9(7):e1003121. doi: 10.1371/journal.pcbi.1003121. Epub 2013 Jul 18.
6
Histone variant H2A.Z functions in sister chromatid cohesion in Saccharomyces cerevisiae.
Mol Cell Biol. 2013 Sep;33(17):3473-81. doi: 10.1128/MCB.00162-12. Epub 2013 Jul 1.
7
Regulating repression: roles for the sir4 N-terminus in linker DNA protection and stabilization of epigenetic states.
PLoS Genet. 2012;8(5):e1002727. doi: 10.1371/journal.pgen.1002727. Epub 2012 May 24.
8
Sir3 and epigenetic inheritance of silent chromatin in Saccharomyces cerevisiae.
Mol Cell Biol. 2012 Jul;32(14):2784-93. doi: 10.1128/MCB.06399-11. Epub 2012 May 14.
9
Mating-type genes and MAT switching in Saccharomyces cerevisiae.
Genetics. 2012 May;191(1):33-64. doi: 10.1534/genetics.111.134577.
10
Roles of chromatin remodeling factors in the formation and maintenance of heterochromatin structure.
J Biol Chem. 2011 Apr 22;286(16):14659-69. doi: 10.1074/jbc.M110.183269. Epub 2011 Mar 9.

本文引用的文献

1
REP3-mediated silencing in Saccharomyces cerevisiae.
Genetics. 2004 Jan;166(1):79-87. doi: 10.1534/genetics.166.1.79.
3
The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae.
Annu Rev Biochem. 2003;72:481-516. doi: 10.1146/annurev.biochem.72.121801.161547. Epub 2003 Mar 27.
5
Cell-cycle control of the establishment of mating-type silencing in S. cerevisiae.
Genes Dev. 2002 Nov 15;16(22):2935-45. doi: 10.1101/gad.764102.
8
Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae.
Mol Biol Cell. 2002 Jul;13(7):2207-22. doi: 10.1091/mbc.e02-03-0175.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验