Suppr超能文献

染色质重塑因子在异染色质结构的形成和维持中的作用。

Roles of chromatin remodeling factors in the formation and maintenance of heterochromatin structure.

机构信息

Department of Biology, University of Rochester, Rochester, New York 14627, USA.

出版信息

J Biol Chem. 2011 Apr 22;286(16):14659-69. doi: 10.1074/jbc.M110.183269. Epub 2011 Mar 9.

Abstract

Heterochromatin consists of highly ordered nucleosomes with characteristic histone modifications. There is evidence implicating chromatin remodeling proteins in heterochromatin formation, but their exact roles are not clear. We demonstrate in Saccharomyces cerevisiae that the Fun30p and Isw1p chromatin remodeling factors are similarly required for transcriptional silencing at the HML locus, but they differentially contribute to the structure and stability of HML heterochromatin. In the absence of Fun30p, only a partially silenced structure is established at HML. Such a structure resembles fully silenced heterochromatin in histone modifications but differs markedly from both fully silenced and derepressed chromatin structures regarding nucleosome arrangement. This structure likely represents an intermediate state of heterochromatin that can be converted by Fun30p to the mature state. Moreover, Fun30p removal reduces the rate of de novo establishment of heterochromatin, suggesting that Fun30p assists the silencing machinery in forming heterochromatin. We also find evidence suggesting that Fun30p functions together with, or after, the action of the silencing machinery. On the other hand, Isw1p is dispensable for the formation of heterochromatin structure but is instead critically required for maintaining its stability. Therefore, chromatin remodeling proteins may rearrange nucleosomes during the formation of heterochromatin or serve to stabilize/maintain heterochromatin structure.

摘要

异染色质由具有特征组蛋白修饰的高度有序核小体组成。有证据表明染色质重塑蛋白参与异染色质的形成,但它们的确切作用尚不清楚。我们在酿酒酵母中证明,Fun30p 和 Isw1p 染色质重塑因子对于 HML 基因座的转录沉默同样是必需的,但它们对 HML 异染色质的结构和稳定性的贡献不同。在 Fun30p 缺失的情况下,HML 上只建立了部分沉默的结构。这种结构类似于在组蛋白修饰中完全沉默的异染色质,但在核小体排列方面与完全沉默和去抑制的染色质结构明显不同。这种结构可能代表异染色质的中间状态,可以由 Fun30p 转化为成熟状态。此外,Fun30p 的去除降低了异染色质从头建立的速率,表明 Fun30p 有助于沉默机制形成异染色质。我们还发现证据表明,Fun30p 与沉默机制一起作用,或者在沉默机制作用之后发挥作用。另一方面,Isw1p 对于异染色质结构的形成不是必需的,但对于其稳定性的维持是至关重要的。因此,染色质重塑蛋白可能在异染色质形成过程中重排核小体,或者有助于稳定/维持异染色质结构。

相似文献

1
Roles of chromatin remodeling factors in the formation and maintenance of heterochromatin structure.
J Biol Chem. 2011 Apr 22;286(16):14659-69. doi: 10.1074/jbc.M110.183269. Epub 2011 Mar 9.
2
Functions of protosilencers in the formation and maintenance of heterochromatin in Saccharomyces cerevisiae.
PLoS One. 2012;7(5):e37092. doi: 10.1371/journal.pone.0037092. Epub 2012 May 17.
3
A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin.
PLoS Biol. 2004 May;2(5):E131. doi: 10.1371/journal.pbio.0020131. Epub 2004 Mar 23.
4
Differential contributions of histone H3 and H4 residues to heterochromatin structure.
Genetics. 2011 Jun;188(2):291-308. doi: 10.1534/genetics.111.127886. Epub 2011 Mar 24.
6
Pivotal roles of PCNA loading and unloading in heterochromatin function.
Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E2030-E2039. doi: 10.1073/pnas.1721573115. Epub 2018 Feb 13.
7
Analysis of nucleosome repositioning by yeast ISWI and Chd1 chromatin remodeling complexes.
J Biol Chem. 2006 Jun 16;281(24):16279-88. doi: 10.1074/jbc.M600682200. Epub 2006 Apr 10.
9
Keeping chromatin quiet: how nucleosome remodeling restores heterochromatin after replication.
Cell Cycle. 2011 Dec 1;10(23):4017-25. doi: 10.4161/cc.10.23.18558.
10
Nucleosome Positioning Regulates the Establishment, Stability, and Inheritance of Heterochromatin in .
Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27493-27501. doi: 10.1073/pnas.2004111117. Epub 2020 Oct 19.

引用本文的文献

1
Cis-regulatory atlas of primary human CD4+ T cells.
BMC Genomics. 2023 May 11;24(1):253. doi: 10.1186/s12864-023-09288-3.
3
The Mechanism of Chromatin Remodeler SMARCAD1/Fun30 in Response to DNA Damage.
Front Cell Dev Biol. 2020 Sep 25;8:560098. doi: 10.3389/fcell.2020.560098. eCollection 2020.
4
Nucleosome Positioning Regulates the Establishment, Stability, and Inheritance of Heterochromatin in .
Proc Natl Acad Sci U S A. 2020 Nov 3;117(44):27493-27501. doi: 10.1073/pnas.2004111117. Epub 2020 Oct 19.
5
Role of the ATP-dependent chromatin remodeling enzyme Fun30/Smarcad1 in the regulation of mRNA splicing.
Biochem Biophys Res Commun. 2020 May 28;526(2):453-458. doi: 10.1016/j.bbrc.2020.02.175. Epub 2020 Mar 28.
6
Nucleosome Remodeling by Fun30 in the DNA Damage Response.
Front Mol Biosci. 2019 Sep 4;6:78. doi: 10.3389/fmolb.2019.00078. eCollection 2019.
8
Crystal structure of the ATPase-C domain of the chromatin remodeller Fun30 from Saccharomyces cerevisiae.
Acta Crystallogr F Struct Biol Commun. 2017 Jan 1;73(Pt 1):9-15. doi: 10.1107/S2053230X16019269.
10
Determinants of Sir2-Mediated, Silent Chromatin Cohesion.
Mol Cell Biol. 2016 Jul 14;36(15):2039-50. doi: 10.1128/MCB.00057-16. Print 2016 Aug 1.

本文引用的文献

1
The Snf2 homolog Fun30 acts as a homodimeric ATP-dependent chromatin-remodeling enzyme.
J Biol Chem. 2010 Mar 26;285(13):9477-9484. doi: 10.1074/jbc.M109.082149. Epub 2010 Jan 14.
2
The SNF2-family member Fun30 promotes gene silencing in heterochromatic loci.
PLoS One. 2009 Dec 1;4(12):e8111. doi: 10.1371/journal.pone.0008111.
3
The biology of chromatin remodeling complexes.
Annu Rev Biochem. 2009;78:273-304. doi: 10.1146/annurev.biochem.77.062706.153223.
4
The chromatin remodelling factor dATRX is involved in heterochromatin formation.
PLoS One. 2008 May 7;3(5):e2099. doi: 10.1371/journal.pone.0002099.
5
ISWI regulates higher-order chromatin structure and histone H1 assembly in vivo.
PLoS Biol. 2007 Sep;5(9):e232. doi: 10.1371/journal.pbio.0050232.
6
The chromatin-remodeling factor FACT contributes to centromeric heterochromatin independently of RNAi.
Curr Biol. 2007 Jul 17;17(14):1219-24. doi: 10.1016/j.cub.2007.06.028. Epub 2007 Jul 5.
7
SHREC, an effector complex for heterochromatic transcriptional silencing.
Cell. 2007 Feb 9;128(3):491-504. doi: 10.1016/j.cell.2006.12.035.
8
Ubiquitin-binding domains.
Biochem J. 2006 Nov 1;399(3):361-72. doi: 10.1042/BJ20061138.
9
Identification of multiple distinct Snf2 subfamilies with conserved structural motifs.
Nucleic Acids Res. 2006 May 31;34(10):2887-905. doi: 10.1093/nar/gkl295. Print 2006.
10
Structural analyses of Sum1-1p-dependent transcriptionally silent chromatin in Saccharomyces cerevisiae.
J Mol Biol. 2006 Mar 10;356(5):1082-92. doi: 10.1016/j.jmb.2005.11.089. Epub 2005 Dec 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验