Suppr超能文献

对某些死因的时间序列分析。

Analysis of the time series for some causes of death.

作者信息

Kis Maria

机构信息

Debrecen University, Boszormenyi ut 138, H-4032 Debrecen, Hungary.

出版信息

Stud Health Technol Inform. 2002;90:439-43.

Abstract

The mortality data may be analysed by time series methods such as autoregressive integrated moving average (ARIMA) modelling. This method is demonstrated by two examples: analysis of the mortality data of cerebrovascular diseases and analysis of the mortality data of cancer of cervix. Mathematical expressions are given for the results of analysis. The relationships between time series of mortality rates were studied with ARIMA models. Calculations of confidence intervals for autoregressive parameters by tree methods: standard normal distribution as estimation and estimation of the White's theory and the continuous time case estimation. Analysing the confidence intervals of the first order autoregressive parameters we may conclude that the confidence intervals were much smaller than other estimations by applying the continuous time estimation model.

摘要

死亡率数据可以通过时间序列方法进行分析,如自回归积分滑动平均(ARIMA)建模。通过两个例子展示了这种方法:脑血管疾病死亡率数据的分析和宫颈癌死亡率数据的分析。给出了分析结果的数学表达式。使用ARIMA模型研究了死亡率时间序列之间的关系。通过三种方法计算自回归参数的置信区间:以标准正态分布作为估计、怀特理论的估计以及连续时间情况的估计。分析一阶自回归参数的置信区间,我们可以得出结论,通过应用连续时间估计模型,置信区间比其他估计要小得多。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验