Oz Murat, Tchugunova Yulia, Dinc Meral
National Institute on Drug Abuse, National Institutes of Health, DHHS, Intramural Research Program, Cellular Neurobiology Branch, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
Eur J Pharmacol. 2004 Oct 11;502(1-2):47-58. doi: 10.1016/j.ejphar.2004.08.052.
The effects of cannabinoid receptor ligands including 2-arachidonoylglycerol, R-methanandamide, Delta9-THC (Delta9-tetrahydrocannabinol), WIN 55,212-2 [4,5-dihydro-2-methyl-4(4-morpholinylmethyl)-1-(1-naphthalenylcarbonyl)-6H-pyrrolo[3,2,1ij]quinolin-6-one], CP 55,940 ([1alpha,2beta-(R)-5alpha]-(-)-5-(1,1-dimethyl)-2-[5-hydroxy-2-(3-hydroxypropyl) cyclohexyl-phenol]) and a series of fatty acids on depolarization-induced Ca2+ effluxes mediated by voltage-dependent Ca2+ channels were investigated comparatively in transverse tubule membrane vesicles from rabbit skeletal muscle. Vesicles were loaded with 45Ca2+ and membrane potentials were generated by establishing potassium gradients across the vesicle using the ionophore valinomycin. Endocannabinoids, 2-arachidonoylglycerol and R-methanandamide (all 10 microM), inhibited depolarization-induced Ca2+ effluxes and specific binding of [3H]PN 200-110 (isradipine) to transverse tubule membranes. On the other hand, synthetic cannabinoids, including CP 55,940, WIN 55,212-2, and Delta9-THC (all 10 microM), were ineffective. Additional experiments using endocannabinoid metabolites suggested that whereas ethanolamine and glycerol were ineffective, arachidonic acid inhibited Ca2+ effluxes and specific binding of [3H]PN 200-110. Further studies indicated that only those fatty acids containing two or more double bonds were effective in inhibiting depolarization-induced Ca2+ effluxes and specific binding of [3H]PN 200-110. These results indicate that endocannabinoids, but not synthetic cannabinoids, directly inhibit the function of voltage-dependent calcium channels (VDCCs) and modulate the specific binding of calcium channel ligands of the dihydropyridine (DHP) class.
在兔骨骼肌横管膜囊泡中,比较研究了包括2-花生四烯酸甘油酯、R-甲烷酰胺、Δ9-四氢大麻酚(Δ9-THC)、WIN 55,212-2 [4,5-二氢-2-甲基-4(4-吗啉基甲基)-1-(1-萘甲酰基)-6H-吡咯并[3,2,1ij]喹啉-6-酮]、CP 55,940 ([1α,2β-(R)-5α]-(-)-5-(1,1-二甲基)-2-[5-羟基-2-(3-羟丙基)环己基]苯酚])在内的大麻素受体配体以及一系列脂肪酸对电压依赖性钙通道介导的去极化诱导的Ca2+外流的影响。囊泡用45Ca2+加载,通过使用离子载体缬氨霉素在囊泡上建立钾梯度来产生膜电位。内源性大麻素、2-花生四烯酸甘油酯和R-甲烷酰胺(均为10 microM)抑制去极化诱导的Ca2+外流以及[3H]PN 200-110(伊拉地平)与横管膜的特异性结合。另一方面,合成大麻素,包括CP 55,940、WIN 55,212-2和Δ9-THC(均为10 microM)则无效。使用内源性大麻素代谢物的额外实验表明,乙醇胺和甘油无效,而花生四烯酸抑制Ca2+外流以及[3H]PN 200-110的特异性结合。进一步研究表明,只有那些含有两个或更多双键的脂肪酸才能有效抑制去极化诱导的Ca2+外流以及[3H]PN 200-110的特异性结合。这些结果表明,内源性大麻素而非合成大麻素直接抑制电压依赖性钙通道(VDCCs)的功能,并调节二氢吡啶(DHP)类钙通道配体的特异性结合。