Lein Pamela J, Fryer Allison D
Center for Research on Occupational and Environmental Toxicology and Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239, USA.
Toxicol Sci. 2005 Jan;83(1):166-76. doi: 10.1093/toxsci/kfi001. Epub 2004 Oct 6.
We previously demonstrated that the organophosphorus (OP) insecticide chlorpyrifos potentiates vagally induced bronchoconstriction independent of acetylcholinesterase (AChE) inhibition by decreasing the function of neuronal M2 muscarinic receptors that normally inhibit acetylcholine release from parasympathetic nerves supplying airway smooth muscle. However, it has been reported that different OPs may not affect muscarinic receptors equally. To determine if the effects of chlorpyrifos on airway hyperreactivity can be generalized to other OPs, we tested whether parathion and diazinon also inhibit neuronal M2 receptor function resulting in airway hyperreactivity. In control animals, the M2 agonist pilocarpine inhibits vagally induced bronchoconstriction in a dose-related manner. Treatment of guinea pigs with either parathion (1-10 mg/kg, sc) or diazinon (0.75-75 mg/kg, sc) shifted pilocarpine dose-response curves significantly to the right, indicating loss of neuronal M2 receptor function. These OP treatments also significantly potentiated vagally induced bronchoconstriction. Treatments that did not decrease M2 receptor function (parathion at 0.1 mg/kg, sc, or the non-OP insecticide permethrin at 150 mg/kg, sc) also did not cause airway hyperreactivity. None of the OP treatments altered bronchoconstriction induced by iv acetylcholine or methacholine in vagotomized guinea pigs, suggesting that OP-induced airway hyperreactivity is not due to altered function of muscarinic receptors on airway smooth muscle or to AChE inhibition. AChE assays of lung, blood, and brain confirmed that parathion and diazinon decreased M2 function at concentrations that did not inhibit AChE. These data suggest that multiple diethyl phosphorothionate OPs cause airway hyperreactivity via a common mechanism of M2 receptor dysfunction independent of AChE inhibition.
我们之前证明,有机磷(OP)杀虫剂毒死蜱可增强迷走神经诱发的支气管收缩,其作用与乙酰胆碱酯酶(AChE)抑制无关,是通过降低神经元M2毒蕈碱受体的功能来实现的,该受体通常抑制来自供应气道平滑肌的副交感神经释放乙酰胆碱。然而,有报道称不同的有机磷可能对毒蕈碱受体的影响并不相同。为了确定毒死蜱对气道高反应性的影响是否能推广到其他有机磷,我们测试了对硫磷和二嗪农是否也会抑制神经元M2受体功能并导致气道高反应性。在对照动物中,M2激动剂毛果芸香碱以剂量相关的方式抑制迷走神经诱发的支气管收缩。用对硫磷(1 - 10毫克/千克,皮下注射)或二嗪农(0.75 - 75毫克/千克,皮下注射)处理豚鼠后,毛果芸香碱的剂量反应曲线显著右移,表明神经元M2受体功能丧失。这些有机磷处理还显著增强了迷走神经诱发的支气管收缩。未降低M2受体功能的处理(0.1毫克/千克皮下注射的对硫磷或150毫克/千克皮下注射的非有机磷杀虫剂氯菊酯)也未引起气道高反应性。在迷走神经切断的豚鼠中,没有一种有机磷处理改变静脉注射乙酰胆碱或乙酰甲胆碱诱发的支气管收缩,这表明有机磷诱发的气道高反应性并非由于气道平滑肌上毒蕈碱受体功能改变或AChE抑制所致。对肺、血液和脑的AChE检测证实,对硫磷和二嗪农在不抑制AChE的浓度下降低了M2功能。这些数据表明,多种二乙基硫代磷酸酯类有机磷通过与AChE抑制无关的M2受体功能障碍这一共同机制导致气道高反应性。