Suppr超能文献

预测术后人工晶状体的位置和屈光状态。

Predicting postoperative intraocular lens position and refraction.

作者信息

Preussner Paul-Rolf, Wahl Jochen, Weitzel Daniela, Berthold Silke, Kriechbaum Katharina, Findl Oliver

机构信息

Universitäts-Augenklinik, Mainz, Germany.

出版信息

J Cataract Refract Surg. 2004 Oct;30(10):2077-83. doi: 10.1016/j.jcrs.2004.07.004.

Abstract

PURPOSE

To predict the postoperative IOL position and refraction as accurately as possible independent of individualization of the parameters.

SETTING

Universitats-Augenklinik, Mainz, Germany, and Vienna, Austria.

METHODS

One patient cohort (189 eyes, Vienna) was used to calibrate the prediction method, which was then applied to a second cohort (65 eyes, Mainz). All calculations were based on consistent numerical ray tracing of the pseudophakic eye using the original manufacturer's intraocular lens (IOL) data (radii, thickness, refractive index). A new algorithm to predict IOL position was developed. Ultrasound (US) axial lengths were calibrated relative to partial coherence interferometry (PCI). Corneal radii extracted from topography were checked against radii measured with the IOLMaster (Zeiss) and by Littmann keratometry.

RESULTS

Zero mean prediction errors for IOL position and refraction were obtained without adjusting the parameters and with PCI lengths or US lengths calibrated relative to the PCI values. There was no significant loss of accuracy of US data compared to PCI data. Corneal radii extracted from topography were slightly but statistically significantly different from the Littmann values, and they were more accurate than the latter with respect to prediction error. The measured mean central IOL position (distance from posterior corneal surface) for all IOL types was 4.580 mm, a value very close to the mean recalculated from A-constants (4.587 mm). The difference in the individual central IOL position relative to the mean value depended only linearly (ie, no higher orders such as square or cubic are needed) on axial length, with the mean central IOL position as a free parameter. This parameter should be 4.6 +/- 0.2 mm (the same value as independently measured or recalculated) to obtain zero steepness of the prediction error as a function of axial length, producing zero bias for long and short eyes.

CONCLUSIONS

Calculation errors from formulas and confusing adjusting parameters can be avoided if calculations and measurements are performed on a clear and simple physical basis. Nevertheless, an individual prediction error, typically 0.5 to 1.0 diopter, seems to be unavoidable.

摘要

目的

尽可能准确地预测术后人工晶状体(IOL)的位置和屈光状态,而不依赖于参数的个体化。

设置

德国美因茨大学眼科医院以及奥地利维也纳。

方法

一个患者队列(189只眼,维也纳)用于校准预测方法,然后将其应用于第二个队列(65只眼,美因茨)。所有计算均基于使用原始制造商的人工晶状体(IOL)数据(半径、厚度、折射率)对假晶状体眼进行一致的数值光线追踪。开发了一种预测IOL位置的新算法。超声(US)眼轴长度相对于部分相干干涉测量法(PCI)进行校准。将从地形图中提取的角膜半径与用IOLMaster(蔡司)和Littmann角膜曲率计测量的半径进行核对。

结果

在不调整参数且使用相对于PCI值校准的PCI长度或US长度的情况下,获得了IOL位置和屈光的零平均预测误差。与PCI数据相比,US数据的准确性没有显著损失。从地形图中提取的角膜半径与Littmann值略有差异,但在统计学上有显著差异,并且在预测误差方面比后者更准确。所有IOL类型的测量平均中央IOL位置(距角膜后表面的距离)为4.580 mm,该值非常接近根据A常数重新计算的平均值(4.587 mm)。个体中央IOL位置相对于平均值的差异仅线性地(即不需要平方或立方等高阶项)依赖于眼轴长度,以平均中央IOL位置作为自由参数。该参数应为4.6±0.2 mm(与独立测量或重新计算的值相同),以使预测误差作为眼轴长度的函数的陡度为零,从而对长眼和短眼产生零偏差。

结论

如果在清晰简单的物理基础上进行计算和测量,则可以避免公式计算误差和令人困惑的调整参数。然而,通常为0.5至1.0屈光度的个体预测误差似乎是不可避免的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验