University Eye Clinic, Aarhus Hospital NBG, Aarhus, Denmark.
J Cataract Refract Surg. 2012 Apr;38(4):641-7. doi: 10.1016/j.jcrs.2011.10.035. Epub 2012 Feb 18.
To describe a method for back-solving the power of an intraocular lens (IOL) in situ based on laser biometry and ray-tracing analysis of the pseudophakic eye.
University Eye Clinic, Aarhus Hospital, Aarhus, Denmark.
Evaluation of diagnostic test or technology.
This study comprised pseudophakic eyes with an IOL power ranging from -2.00 to +36.00 diopters (D). Preoperatively, the corneal radius was measured with conventional autokeratometry and the axial length (AL) with optical biometry. After surgery, the position of the IOL was recorded using laser interferometry. Based on the postoperative refraction and the biometric measurements, a ray-tracing analysis was performed back-solving for the power of the IOL in situ. The analysis was performed assuming pupil diameters from 0.0 to 8.0 mm with and without correction for the Stiles-Crawford effect.
The study evaluated 767 pseudophakic eyes (583 patients). Assuming a 3.0 mm pupil, the mean prediction error between the labeled and the calculated IOL power (± 1 standard deviation [SD]) was -0.26 D ± 0.65 (SD) (range -2.4 to +1.8 D). The prediction error showed no bias with IOL power or with AL. The calculated IOL power depended on the assumed pupil size and the Stiles-Crawford effect. However, the latter had a modulatory effect on the prediction error for large pupil diameters (>5.0 mm) only.
The optics of the pseudophakic eye can be accurately described using exact ray tracing and modern biometric techniques.
描述一种基于激光生物测量和模拟人工晶状体(IOL)眼像差的光线追踪分析来反推眼内 IOL 实际屈光力的方法。
丹麦奥胡斯大学眼科医院。
诊断测试或技术的评估。
本研究纳入了屈光力范围为-2.00 至+36.00 屈光度(D)的人工晶状体眼。术前使用常规角膜曲率计测量角膜半径,使用光学生物测量仪测量眼轴长度(AL)。术后使用激光干涉仪记录 IOL 位置。基于术后屈光度和生物测量数据,通过光线追踪分析反推眼内 IOL 的实际屈光力。分析时假设瞳孔直径为 0.0 至 8.0mm,并校正斯氏光阑效应。
本研究共评估了 767 只人工晶状体眼(583 例患者)。假设瞳孔直径为 3.0mm 时,标记的和计算的 IOL 屈光力之间的平均预测误差(±1 个标准差[SD])为-0.26D±0.65(SD)(范围-2.4 至+1.8 D)。预测误差与 IOL 屈光力或 AL 无关,无偏差。计算的 IOL 屈光力取决于假设的瞳孔大小和斯氏光阑效应。然而,只有在瞳孔直径较大(>5.0mm)时,后者才对预测误差有调节作用。
使用精确的光线追踪和现代生物测量技术可以准确描述人工晶状体眼的光学特性。