Piñero David P, Camps Vicente J, Ramón María L, Mateo Verónica, Pérez-Cambrodí Rafael J
Grupo de Óptica y Percepción Visual (GOPV). Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Alicante 03690, Spain ; Department of Ophthalmology (Oftalmar), Vithas Medimar International Hospital, Alicante 03016, Spain ; Foundation for the Visual Quality (FUNCAVIS: Fundación para la Calidad Visual), Alicante 03016, Spain.
Grupo de Óptica y Percepción Visual (GOPV). Department of Optics, Pharmacology and Anatomy, University of Alicante, San Vicente del Raspeig, Alicante 03690, Spain.
Int J Ophthalmol. 2015 Jun 18;8(3):501-7. doi: 10.3980/j.issn.2222-3959.2015.03.12. eCollection 2015.
To evaluate the prediction error in intraocular lens (IOL) power calculation for a rotationally asymmetric refractive multifocal IOL and the impact on this error of the optimization of the keratometric estimation of the corneal power and the prediction of the effective lens position (ELP).
Retrospective study including a total of 25 eyes of 13 patients (age, 50 to 83y) with previous cataract surgery with implantation of the Lentis Mplus LS-312 IOL (Oculentis GmbH, Germany). In all cases, an adjusted IOL power (PIOLadj) was calculated based on Gaussian optics using a variable keratometric index value (nkadj) for the estimation of the corneal power (Pkadj) and on a new value for ELP (ELPadj) obtained by multiple regression analysis. This PIOLadj was compared with the IOL power implanted (PIOLReal) and the value proposed by three conventional formulas (Haigis, Hoffer Q and Holladay I).
PIOLReal was not significantly different than PIOLadj and Holladay IOL power (P>0.05). In the Bland and Altman analysis, PIOLadj showed lower mean difference (-0.07 D) and limits of agreement (of 1.47 and -1.61 D) when compared to PIOLReal than the IOL power value obtained with the Holladay formula. Furthermore, ELPadj was significantly lower than ELP calculated with other conventional formulas (P<0.01) and was found to be dependent on axial length, anterior chamber depth and Pkadj.
Refractive outcomes after cataract surgery with implantation of the multifocal IOL Lentis Mplus LS-312 can be optimized by minimizing the keratometric error and by estimating ELP using a mathematical expression dependent on anatomical factors.
评估旋转不对称屈光性多焦点人工晶状体(IOL)屈光力计算中的预测误差,以及角膜屈光力角膜曲率计估计优化和有效晶状体位置(ELP)预测对该误差的影响。
回顾性研究,共纳入13例患者(年龄50至83岁)的25只眼,这些患者既往接受过白内障手术并植入了Lentis Mplus LS - 312 IOL(德国Oculentis GmbH公司)。在所有病例中,基于高斯光学原理,使用可变角膜曲率指数值(nkadj)估计角膜屈光力(Pkadj),并基于多元回归分析获得的ELP新值(ELPadj),计算调整后的IOL屈光力(PIOLadj)。将该PIOLadj与植入的IOL屈光力(PIOLReal)以及三个传统公式(Haigis、Hoffer Q和Holladay I)提出的值进行比较。
PIOLReal与PIOLadj和Holladay IOL屈光力无显著差异(P>0.05)。在Bland和Altman分析中,与PIOLReal相比,PIOLadj的平均差异较低(-0.07 D),一致性界限为1.47 D和-1.61 D,优于用Holladay公式获得的IOL屈光力值。此外,ELPadj显著低于用其他传统公式计算的ELP(P<0.01),且发现其依赖于眼轴长度、前房深度和Pkadj。
通过最小化角膜曲率计误差并使用依赖于解剖因素的数学表达式估计ELP,可以优化植入多焦点IOL Lentis Mplus LS - 312的白内障手术后的屈光结果。