Suppr超能文献

利用实验设计和响应面方法优化产红色糖多孢菌N47的培养及ε-红霉酮的生产

Optimization of Streptomyces peucetius var. caesius N47 cultivation and epsilon-rhodomycinone production using experimental designs and response surface methods.

作者信息

Kiviharju K, Leisola M, Eerikäinen T

机构信息

Laboratory of Bioprocess Engineering, Helsinki University of Technology, PL 6100, 02015 Hut, Finland.

出版信息

J Ind Microbiol Biotechnol. 2004 Nov;31(10):475-81. doi: 10.1007/s10295-004-0172-3. Epub 2004 Oct 7.

Abstract

Streptomyces peucetius var. caesius is an aerobic bacterium that produces doxorubicin as a secondary metabolite. A mixture design was applied for the screening of suitable complex medium components in the cultivation of S. peucetius var. caesius N47, which is an epsilon-rhodomycinone-accumulating mutant strain. epsilon-Rhodomycinone is a non-glycosylated precursor of doxorubicin. Best growth results were obtained with soy peptone and beef extract. A central composite face-centered (CCF) experimental design was constructed for the investigation of pH, temperature and dissolved oxygen (DO) effects on the cultivation growth phase. Another CCF was applied to the production phase to investigate the effects of aeration, pH, temperature and stirring rate on epsilon-rhodomycinone production. An increase in cultivation temperature increased both cell growth and glucose consumption rate. Best epsilon-rhodomycinone productivities were obtained in temperatures around 30 degrees C. DO control increased all growth phase responses, but aeration in the production phase coupled with pH decrease resulted in rapid epsilon-rhodomycinone decay in the medium. In non-aerated production phases a pH change resulted in better productivity than in experiments without pH change. A pH increase with a temperature decrease seemed most beneficial for productivity. This implies that dynamic control strategies in batch production of epsilon-rhodomycinone could increase the overall process productivity.

摘要

变铅青链霉菌青紫变种是一种需氧细菌,可产生阿霉素作为次级代谢产物。采用混合设计法筛选适合培养变铅青链霉菌青紫变种N47(一种积累ε-红霉酮的突变菌株)的复合培养基成分。ε-红霉酮是阿霉素的非糖基化前体。使用大豆蛋白胨和牛肉浸膏获得了最佳生长结果。构建了中心复合表面响应(CCF)实验设计,以研究pH、温度和溶解氧(DO)对培养生长阶段的影响。另一个CCF应用于生产阶段,以研究通气、pH、温度和搅拌速率对ε-红霉酮生产的影响。培养温度升高会增加细胞生长和葡萄糖消耗速率。在30℃左右的温度下可获得最佳的ε-红霉酮生产率。溶解氧控制提高了所有生长阶段的响应,但生产阶段的通气与pH降低相结合导致培养基中ε-红霉酮迅速降解。在非通气生产阶段,pH变化比无pH变化的实验具有更高的生产率。pH升高且温度降低似乎对生产率最有利。这意味着在ε-红霉酮分批生产中采用动态控制策略可以提高整个过程的生产率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验