Soria Marcelo Abel, Gonzalez Funes Jose Luis, Garcia Augusto Fernando
Cátedra de Microbiología Agrícola, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, 1417 Buenos Aires, Argentina.
J Ind Microbiol Biotechnol. 2004 Nov;31(10):469-74. doi: 10.1007/s10295-004-0171-4. Epub 2004 Oct 6.
Many variables and their interactions can affect a biotechnological process. Testing a large number of variables and all their possible interactions is a cumbersome task and its cost can be prohibitive. Several screening strategies, with a relatively low number of experiments, can be used to find which variables have the largest impact on the process and estimate the magnitude of their effect. One approach for process screening is the use of experimental designs, among which fractional factorial and Plackett-Burman designs are frequent choices. Other screening strategies involve the use of artificial neural networks (ANNs). The advantage of ANNs is that they have fewer assumptions than experimental designs, but they render black-box models (i.e., little information can be extracted about the process mechanics). In this paper, we simulate a biotechnological process (fed-batch growth of baker's yeast) to analyze and compare the effect of random experimental errors of different magnitudes and statistical distributions on experimental designs and ANNs. Except for the situation in which the error has a normal distribution and the standard deviation is constant, it was not possible to determine a clear-cut rule for favoring one screening strategy over the other. Instead, we found that the data can be better analyzed using both strategies simultaneously.
许多变量及其相互作用会影响生物技术过程。测试大量变量及其所有可能的相互作用是一项繁琐的任务,其成本可能过高。可以使用几种实验次数相对较少的筛选策略来找出对该过程影响最大的变量,并估计其影响程度。过程筛选的一种方法是使用实验设计,其中分数析因设计和普拉凯特-伯曼设计是常用的选择。其他筛选策略涉及使用人工神经网络(ANN)。人工神经网络的优点是与实验设计相比,其假设较少,但它们生成的是黑箱模型(即,关于过程机制几乎无法提取信息)。在本文中,我们模拟了一个生物技术过程(面包酵母的补料分批培养),以分析和比较不同大小和统计分布的随机实验误差对实验设计和人工神经网络的影响。除了误差呈正态分布且标准差恒定的情况外,无法确定一种明确的规则来表明更倾向于一种筛选策略而非另一种。相反,我们发现同时使用这两种策略可以更好地分析数据。